blob: 09461c65418d7d0e8aacd3e7bf93068af4df52f0 [file] [log] [blame]
piotr437f5462014-02-04 17:57:25 +01001/* -*- c++ -*- */
piotrd0bf1492014-02-05 17:27:32 +01002/*
piotr437f5462014-02-04 17:57:25 +01003 * Copyright 2014 <+YOU OR YOUR COMPANY+>.
piotrd0bf1492014-02-05 17:27:32 +01004 *
piotr437f5462014-02-04 17:57:25 +01005 * This is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3, or (at your option)
8 * any later version.
piotrd0bf1492014-02-05 17:27:32 +01009 *
piotr437f5462014-02-04 17:57:25 +010010 * This software is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
piotrd0bf1492014-02-05 17:27:32 +010014 *
piotr437f5462014-02-04 17:57:25 +010015 * You should have received a copy of the GNU General Public License
16 * along with this software; see the file COPYING. If not, write to
17 * the Free Software Foundation, Inc., 51 Franklin Street,
18 * Boston, MA 02110-1301, USA.
19 */
20
21#ifdef HAVE_CONFIG_H
22#include "config.h"
23#endif
24
25#include <gnuradio/io_signature.h>
26#include "receiver_impl.h"
27
28#include <gnuradio/io_signature.h>
29#include <gnuradio/math.h>
30#include <math.h>
31#include <boost/circular_buffer.hpp>
32#include <algorithm>
33#include <numeric>
34#include <viterbi_detector.h>
35#include <string.h>
36#include <sch.h>
37#include <iostream>
38#include <iomanip>
piotr437f5462014-02-04 17:57:25 +010039#include <assert.h>
piotr6d152d92014-02-21 00:02:44 +010040#include <boost/scoped_ptr.hpp>
piotr437f5462014-02-04 17:57:25 +010041
42#define SYNC_SEARCH_RANGE 30
43
piotrd0bf1492014-02-05 17:27:32 +010044namespace gr
45{
46namespace gsm
47{
piotr437f5462014-02-04 17:57:25 +010048
piotrd0bf1492014-02-05 17:27:32 +010049typedef std::list<float> list_float;
50typedef std::vector<float> vector_float;
piotr437f5462014-02-04 17:57:25 +010051
piotrd0bf1492014-02-05 17:27:32 +010052typedef boost::circular_buffer<float> circular_buffer_float;
piotr437f5462014-02-04 17:57:25 +010053
piotrd0bf1492014-02-05 17:27:32 +010054receiver::sptr
piotr6d152d92014-02-21 00:02:44 +010055receiver::make(feval_dd * tuner, int osr, int arfcn)
piotrd0bf1492014-02-05 17:27:32 +010056{
57 return gnuradio::get_initial_sptr
piotr6d152d92014-02-21 00:02:44 +010058 (new receiver_impl(tuner, osr, arfcn));
piotrd0bf1492014-02-05 17:27:32 +010059}
60
61/*
62 * The private constructor
63 */
piotr6d152d92014-02-21 00:02:44 +010064receiver_impl::receiver_impl(feval_dd * tuner, int osr, int arfcn)
piotrd0bf1492014-02-05 17:27:32 +010065 : gr::block("receiver",
66 gr::io_signature::make(1, 1, sizeof(gr_complex)),
piotr7c82b172014-02-08 14:15:27 +010067 gr::io_signature::make(0, 0, 0)),
piotrd0bf1492014-02-05 17:27:32 +010068 d_OSR(osr),
69 d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
70 d_tuner(tuner),
71 d_counter(0),
72 d_fcch_start_pos(0),
73 d_freq_offset(0),
74 d_state(first_fcch_search),
75 d_burst_nr(osr),
piotr6d152d92014-02-21 00:02:44 +010076 d_failed_sch(0),
77 d_arfcn((int)(arfcn)),
78 d_signal_dbm(-120)
piotrd0bf1492014-02-05 17:27:32 +010079{
80 int i;
81 gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
82 for (i = 0; i < TRAIN_SEQ_NUM; i++)
piotr437f5462014-02-04 17:57:25 +010083 {
piotr437f5462014-02-04 17:57:25 +010084 gr_complex startpoint;
piotrd0bf1492014-02-05 17:27:32 +010085 if (i == 6 || i == 7) //this is nasty hack
86 {
87 startpoint = gr_complex(-1.0, 0.0); //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
88 }
89 else
90 {
91 startpoint = gr_complex(1.0, 0.0); //I've checked this hack for bcc==0,1,2,3,4,6
piotr437f5462014-02-04 17:57:25 +010092 } //I don't know what about bcc==5 and 7 yet
93 //TODO:find source of this situation - this is purely mathematical problem I guess
94
95 gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
piotr437f5462014-02-04 17:57:25 +010096 }
piotr7c82b172014-02-08 14:15:27 +010097 message_port_register_out(pmt::mp("bursts"));
piotrd0bf1492014-02-05 17:27:32 +010098}
piotr437f5462014-02-04 17:57:25 +010099
piotrd0bf1492014-02-05 17:27:32 +0100100/*
101 * Our virtual destructor.
102 */
103receiver_impl::~receiver_impl()
104{
105}
106
107void receiver_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
108{
109 ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
110}
111
112
113int
114receiver_impl::general_work(int noutput_items,
115 gr_vector_int &ninput_items,
116 gr_vector_const_void_star &input_items,
117 gr_vector_void_star &output_items)
118{
119 const gr_complex *input = (const gr_complex *) input_items[0];
piotr7c82b172014-02-08 14:15:27 +0100120
piotrd0bf1492014-02-05 17:27:32 +0100121 switch (d_state)
piotr437f5462014-02-04 17:57:25 +0100122 {
piotrd0bf1492014-02-05 17:27:32 +0100123 //bootstrapping
124 case first_fcch_search:
piotr7e3b0db2014-02-05 22:44:30 +0100125 DCOUT("FCCH search");
piotrd0bf1492014-02-05 17:27:32 +0100126 if (find_fcch_burst(input, ninput_items[0])) //find frequency correction burst in the input buffer
127 {
piotr5f1e1d32014-02-05 18:10:05 +0100128 //set_frequency(d_freq_offset); //if fcch search is successful set frequency offset
piotr6d152d92014-02-21 00:02:44 +0100129 COUT("Freq offset " << d_freq_offset);
piotr437f5462014-02-04 17:57:25 +0100130 d_state = next_fcch_search;
piotrd0bf1492014-02-05 17:27:32 +0100131 }
132 else
133 {
piotr437f5462014-02-04 17:57:25 +0100134 d_state = first_fcch_search;
piotrd0bf1492014-02-05 17:27:32 +0100135 }
136 break;
piotr437f5462014-02-04 17:57:25 +0100137
piotrd0bf1492014-02-05 17:27:32 +0100138 case next_fcch_search: //this state is used because it takes some time (a bunch of buffered samples)
139 {
piotr7e3b0db2014-02-05 22:44:30 +0100140 DCOUT("NEXT FCCH search");
piotrd0bf1492014-02-05 17:27:32 +0100141 float prev_freq_offset = d_freq_offset; //before previous set_frequqency cause change
142 if (find_fcch_burst(input, ninput_items[0]))
143 {
144 if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET)
145 {
piotr5f1e1d32014-02-05 18:10:05 +0100146 //set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value
piotr6d152d92014-02-21 00:02:44 +0100147 DCOUT("Freq offset " << d_freq_offset);
piotr437f5462014-02-04 17:57:25 +0100148 }
piotrd0bf1492014-02-05 17:27:32 +0100149 d_state = sch_search;
150 }
151 else
152 {
piotrd0bf1492014-02-05 17:27:32 +0100153 d_state = next_fcch_search;
154 }
155 break;
156 }
piotr437f5462014-02-04 17:57:25 +0100157
158
piotrd0bf1492014-02-05 17:27:32 +0100159 case sch_search:
160 {
piotr7c82b172014-02-08 14:15:27 +0100161 DCOUT("SCH search");
piotrd0bf1492014-02-05 17:27:32 +0100162 vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
163 int t1, t2, t3;
164 int burst_start = 0;
165 unsigned char output_binary[BURST_SIZE];
piotr437f5462014-02-04 17:57:25 +0100166
piotrd0bf1492014-02-05 17:27:32 +0100167 if (reach_sch_burst(ninput_items[0])) //wait for a SCH burst
168 {
169 burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
170 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
171 if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) //decode SCH burst
172 {
piotr6d152d92014-02-21 00:02:44 +0100173 DCOUT("sch burst_start: " << burst_start);
174 DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
piotr437f5462014-02-04 17:57:25 +0100175 d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value
176
177 //configure the receiver - tell him where to find which burst type
178 d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51); //in the timeslot nr.0 bursts changes according to t3 counter
179 configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
180 d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts
181 d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts
182 d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
183 d_burst_nr++;
184
185 consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period
186 d_state = synchronized;
piotrd0bf1492014-02-05 17:27:32 +0100187 }
188 else
189 {
piotr437f5462014-02-04 17:57:25 +0100190 d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase
piotr437f5462014-02-04 17:57:25 +0100191 }
piotrd0bf1492014-02-05 17:27:32 +0100192 }
193 else
194 {
195 d_state = sch_search;
196 }
197 break;
198 }
199 //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
200 case synchronized:
201 {
piotr6d152d92014-02-21 00:02:44 +0100202 DCOUT("Synchronized");
piotrd0bf1492014-02-05 17:27:32 +0100203 vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
204 int burst_start;
205 int offset = 0;
206 int to_consume = 0;
207 unsigned char output_binary[BURST_SIZE];
piotr437f5462014-02-04 17:57:25 +0100208
piotrd0bf1492014-02-05 17:27:32 +0100209 burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
piotr6d152d92014-02-21 00:02:44 +0100210 double signal_pwr=0;
211 for(int ii=0;ii<ninput_items[0];ii++)
212 {
213 signal_pwr += abs(input[ii])*abs(input[ii]);
214 }
215 d_signal_dbm=static_cast<int8_t>(round(20*log10(signal_pwr)));
216
piotrd0bf1492014-02-05 17:27:32 +0100217 switch (b_type)
218 {
219 case fcch_burst: //if it's FCCH burst
220 {
221 const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
222 const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
223 double freq_offset = compute_freq_offset(input, first_sample, last_sample); //extract frequency offset from it
piotr437f5462014-02-04 17:57:25 +0100224
piotrd0bf1492014-02-05 17:27:32 +0100225 d_freq_offset_vals.push_front(freq_offset);
piotr6d152d92014-02-21 00:02:44 +0100226 send_burst(d_burst_nr, fc_fb, b_type);
227
piotrd0bf1492014-02-05 17:27:32 +0100228 if (d_freq_offset_vals.size() >= 10)
229 {
230 double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
231 double mean_offset = sum / d_freq_offset_vals.size(); //compute mean
232 d_freq_offset_vals.clear();
piotr7c82b172014-02-08 14:15:27 +0100233 DCOUT("mean offset" << mean_offset);
piotrd0bf1492014-02-05 17:27:32 +0100234 if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET)
235 {
piotr7c82b172014-02-08 14:15:27 +0100236 //d_freq_offset -= mean_offset; //and adjust frequency if it have changed beyond
piotr5f1e1d32014-02-05 18:10:05 +0100237 //set_frequency(d_freq_offset); //some limit
piotr7e3b0db2014-02-05 22:44:30 +0100238 DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
piotrd0bf1492014-02-05 17:27:32 +0100239 }
240 }
241 }
242 break;
243 case sch_burst: //if it's SCH burst
244 {
245 int t1, t2, t3, d_ncc, d_bcc;
246 burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response
247 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
piotr6d152d92014-02-21 00:02:44 +0100248 send_burst(d_burst_nr, output_binary, b_type);
piotrd0bf1492014-02-05 17:27:32 +0100249 if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) //and decode SCH data
250 {
251 // d_burst_nr.set(t1, t2, t3, 0); //but only to check if burst_start value is correct
252 d_failed_sch = 0;
253 DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
254 offset = burst_start - floor((GUARD_PERIOD) * d_OSR); //compute offset from burst_start - burst should start after a guard period
piotr7c82b172014-02-08 14:15:27 +0100255 DCOUT("offset: "<<offset);
piotrd0bf1492014-02-05 17:27:32 +0100256 to_consume += offset; //adjust with offset number of samples to be consumed
257 }
258 else
259 {
260 d_failed_sch++;
261 if (d_failed_sch >= MAX_SCH_ERRORS)
262 {
piotr6d152d92014-02-21 00:02:44 +0100263 d_state = next_fcch_search; //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
piotr437f5462014-02-04 17:57:25 +0100264 d_freq_offset_vals.clear();
piotrd0bf1492014-02-05 17:27:32 +0100265 d_freq_offset=0;
piotr7c82b172014-02-08 14:15:27 +0100266 //set_frequency(0);
267 DCOUT("Re-Synchronization");
piotr437f5462014-02-04 17:57:25 +0100268 }
piotr437f5462014-02-04 17:57:25 +0100269 }
piotrd0bf1492014-02-05 17:27:32 +0100270 }
271 break;
piotr437f5462014-02-04 17:57:25 +0100272
piotr7e3b0db2014-02-05 22:44:30 +0100273 case normal_burst:
274 {
275 float normal_corr_max; //if it's normal burst
276 burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc); //get channel impulse response for given training sequence number - d_bcc
piotrd0bf1492014-02-05 17:27:32 +0100277 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
piotr6d152d92014-02-21 00:02:44 +0100278 send_burst(d_burst_nr, output_binary, b_type); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
piotrd0bf1492014-02-05 17:27:32 +0100279 break;
piotr7e3b0db2014-02-05 22:44:30 +0100280 }
piotrd0bf1492014-02-05 17:27:32 +0100281 case dummy_or_normal:
282 {
piotr7e3b0db2014-02-05 22:44:30 +0100283 unsigned int normal_burst_start;
284 float dummy_corr_max, normal_corr_max;
piotr7c82b172014-02-08 14:15:27 +0100285 DCOUT("Dummy");
piotr7e3b0db2014-02-05 22:44:30 +0100286 get_norm_chan_imp_resp(input, &channel_imp_resp[0], &dummy_corr_max, TS_DUMMY);
piotr7c82b172014-02-08 14:15:27 +0100287 DCOUT("Normal");
piotr7e3b0db2014-02-05 22:44:30 +0100288 normal_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc);
289
piotr7c82b172014-02-08 14:15:27 +0100290 DCOUT("normal_corr_max: " << normal_corr_max << " dummy_corr_max:" << dummy_corr_max);
piotr7e3b0db2014-02-05 22:44:30 +0100291 if (normal_corr_max > dummy_corr_max)
piotrd0bf1492014-02-05 17:27:32 +0100292 {
piotr7e3b0db2014-02-05 22:44:30 +0100293 detect_burst(input, &channel_imp_resp[0], normal_burst_start, output_binary);
piotr6d152d92014-02-21 00:02:44 +0100294 send_burst(d_burst_nr, output_binary, b_type); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
piotrd0bf1492014-02-05 17:27:32 +0100295 }
296 else
297 {
piotr6d152d92014-02-21 00:02:44 +0100298 send_burst(d_burst_nr, dummy_burst, b_type);
piotrd0bf1492014-02-05 17:27:32 +0100299 }
300 }
301 case rach_burst:
piotrd0bf1492014-02-05 17:27:32 +0100302 break;
piotr7e3b0db2014-02-05 22:44:30 +0100303 case dummy:
piotr6d152d92014-02-21 00:02:44 +0100304 send_burst(d_burst_nr, dummy_burst, b_type);
piotrd0bf1492014-02-05 17:27:32 +0100305 break;
306 case empty: //if it's empty burst
307 break; //do nothing
308 }
309
310 d_burst_nr++; //go to next burst
311
312 to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //consume samples of the burst up to next guard period
313 //and add offset which is introduced by
314 //0.25 fractional part of a guard period
piotrd0bf1492014-02-05 17:27:32 +0100315 consume_each(to_consume);
316 }
317 break;
piotr437f5462014-02-04 17:57:25 +0100318 }
319
piotr6d152d92014-02-21 00:02:44 +0100320 return 0;
piotrd0bf1492014-02-05 17:27:32 +0100321}
piotr437f5462014-02-04 17:57:25 +0100322
piotrd0bf1492014-02-05 17:27:32 +0100323
324bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems)
325{
326 circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
327 //best match for FCCH burst
328 float phase_diff = 0;
329 gr_complex conjprod;
330 int start_pos = -1;
331 int hit_count = 0;
332 int miss_count = 0;
333 float min_phase_diff;
334 float max_phase_diff;
335 double best_sum = 0;
336 float lowest_max_min_diff = 99999;
337
338 int to_consume = 0;
339 int sample_number = 0;
340 bool end = false;
341 bool result = false;
342 circular_buffer_float::iterator buffer_iter;
piotr6d152d92014-02-21 00:02:44 +0100343
piotrd0bf1492014-02-05 17:27:32 +0100344 /**@name Possible states of FCCH search algorithm*/
345 //@{
346 enum states
piotr437f5462014-02-04 17:57:25 +0100347 {
piotr437f5462014-02-04 17:57:25 +0100348 init, ///< initialize variables
349 search, ///< search for positive samples
350 found_something, ///< search for FCCH and the best position of it
351 fcch_found, ///< when FCCH was found
352 search_fail ///< when there is no FCCH in the input vector
piotrd0bf1492014-02-05 17:27:32 +0100353 } fcch_search_state;
354 //@}
piotr437f5462014-02-04 17:57:25 +0100355
piotrd0bf1492014-02-05 17:27:32 +0100356 fcch_search_state = init;
piotr437f5462014-02-04 17:57:25 +0100357
piotrd0bf1492014-02-05 17:27:32 +0100358 while (!end)
359 {
360 switch (fcch_search_state)
361 {
piotr437f5462014-02-04 17:57:25 +0100362
piotrd0bf1492014-02-05 17:27:32 +0100363 case init: //initialize variables
piotr437f5462014-02-04 17:57:25 +0100364 hit_count = 0;
365 miss_count = 0;
366 start_pos = -1;
367 lowest_max_min_diff = 99999;
368 phase_diff_buffer.clear();
369 fcch_search_state = search;
370
371 break;
372
piotr7c82b172014-02-08 14:15:27 +0100373 case search: // search for positive samples
piotr437f5462014-02-04 17:57:25 +0100374 sample_number++;
375
piotrd0bf1492014-02-05 17:27:32 +0100376 if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) //if it isn't possible to find FCCH because
377 {
piotr7c82b172014-02-08 14:15:27 +0100378 //there's too few samples left to look into,
piotrd0bf1492014-02-05 17:27:32 +0100379 to_consume = sample_number; //don't do anything with those samples which are left
piotr7c82b172014-02-08 14:15:27 +0100380 //and consume only those which were checked
piotrd0bf1492014-02-05 17:27:32 +0100381 fcch_search_state = search_fail;
382 }
383 else
384 {
385 phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
piotr437f5462014-02-04 17:57:25 +0100386
piotrd0bf1492014-02-05 17:27:32 +0100387 if (phase_diff > 0) //if a positive phase difference was found
388 {
389 to_consume = sample_number;
390 fcch_search_state = found_something; //switch to state in which searches for FCCH
391 }
392 else
393 {
394 fcch_search_state = search;
395 }
piotr437f5462014-02-04 17:57:25 +0100396 }
397
398 break;
399
piotrd0bf1492014-02-05 17:27:32 +0100400 case found_something: // search for FCCH and the best position of it
401 {
402 if (phase_diff > 0)
403 {
piotr437f5462014-02-04 17:57:25 +0100404 hit_count++; //positive phase differencies increases hits_count
piotrd0bf1492014-02-05 17:27:32 +0100405 }
406 else
407 {
piotr437f5462014-02-04 17:57:25 +0100408 miss_count++; //negative increases miss_count
piotrd0bf1492014-02-05 17:27:32 +0100409 }
piotr437f5462014-02-04 17:57:25 +0100410
piotrd0bf1492014-02-05 17:27:32 +0100411 if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR))
412 {
piotr437f5462014-02-04 17:57:25 +0100413 //if miss_count exceeds limit before hit_count
414 fcch_search_state = init; //go to init
415 continue;
piotrd0bf1492014-02-05 17:27:32 +0100416 }
417 else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR))
418 {
piotr437f5462014-02-04 17:57:25 +0100419 //if hit_count and miss_count exceeds limit then FCCH was found
420 fcch_search_state = fcch_found;
421 continue;
piotrd0bf1492014-02-05 17:27:32 +0100422 }
423 else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR))
424 {
piotr437f5462014-02-04 17:57:25 +0100425 //find difference between minimal and maximal element in the buffer
426 //for FCCH this value should be low
427 //this part is searching for a region where this value is lowest
428 min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
429 max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
430
piotrd0bf1492014-02-05 17:27:32 +0100431 if (lowest_max_min_diff > max_phase_diff - min_phase_diff)
432 {
433 lowest_max_min_diff = max_phase_diff - min_phase_diff;
434 start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
435 best_sum = 0;
piotr437f5462014-02-04 17:57:25 +0100436
piotrd0bf1492014-02-05 17:27:32 +0100437 for (buffer_iter = phase_diff_buffer.begin();
438 buffer_iter != (phase_diff_buffer.end());
439 buffer_iter++)
440 {
441 best_sum += *buffer_iter - (M_PI / 2) / d_OSR; //store best value of phase offset sum
442 }
piotr437f5462014-02-04 17:57:25 +0100443 }
piotrd0bf1492014-02-05 17:27:32 +0100444 }
piotr437f5462014-02-04 17:57:25 +0100445
piotrd0bf1492014-02-05 17:27:32 +0100446 sample_number++;
piotr437f5462014-02-04 17:57:25 +0100447
piotrd0bf1492014-02-05 17:27:32 +0100448 if (sample_number >= nitems) //if there's no single sample left to check
449 {
piotr437f5462014-02-04 17:57:25 +0100450 fcch_search_state = search_fail;//FCCH search failed
451 continue;
piotr437f5462014-02-04 17:57:25 +0100452 }
piotrd0bf1492014-02-05 17:27:32 +0100453
454 phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
455 phase_diff_buffer.push_back(phase_diff);
456 fcch_search_state = found_something;
457 }
458 break;
459
460 case fcch_found:
461 {
462 DCOUT("fcch found on position: " << d_counter + start_pos);
463 to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
464
465 d_fcch_start_pos = d_counter + start_pos;
466
467 //compute frequency offset
468 double phase_offset = best_sum / FCCH_HITS_NEEDED;
469 double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
470 d_freq_offset -= freq_offset;
471 DCOUT("freq_offset: " << d_freq_offset);
472
473 end = true;
474 result = true;
piotr437f5462014-02-04 17:57:25 +0100475 break;
piotrd0bf1492014-02-05 17:27:32 +0100476 }
piotr437f5462014-02-04 17:57:25 +0100477
piotrd0bf1492014-02-05 17:27:32 +0100478 case search_fail:
piotr437f5462014-02-04 17:57:25 +0100479 end = true;
480 result = false;
481 break;
482 }
piotr437f5462014-02-04 17:57:25 +0100483 }
484
piotrd0bf1492014-02-05 17:27:32 +0100485 d_counter += to_consume;
486 consume_each(to_consume);
piotr437f5462014-02-04 17:57:25 +0100487
piotrd0bf1492014-02-05 17:27:32 +0100488 return result;
489}
490
piotrd0bf1492014-02-05 17:27:32 +0100491double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
492{
493 double phase_sum = 0;
494 unsigned ii;
495
496 for (ii = first_sample; ii < last_sample; ii++)
piotr437f5462014-02-04 17:57:25 +0100497 {
piotr437f5462014-02-04 17:57:25 +0100498 double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
499 phase_sum += phase_diff;
piotr437f5462014-02-04 17:57:25 +0100500 }
501
piotrd0bf1492014-02-05 17:27:32 +0100502 double phase_offset = phase_sum / (last_sample - first_sample);
503 double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
504 return freq_offset;
505}
piotr437f5462014-02-04 17:57:25 +0100506
piotrd0bf1492014-02-05 17:27:32 +0100507void receiver_impl::set_frequency(double freq_offset)
508{
509 d_tuner->calleval(freq_offset);
510}
piotr437f5462014-02-04 17:57:25 +0100511
piotrd0bf1492014-02-05 17:27:32 +0100512inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
513{
514 gr_complex conjprod = val1 * conj(val2);
515 return fast_atan2f(imag(conjprod), real(conjprod));
516}
piotr437f5462014-02-04 17:57:25 +0100517
piotrd0bf1492014-02-05 17:27:32 +0100518bool receiver_impl::reach_sch_burst(const int nitems)
519{
520 //it just consumes samples to get near to a SCH burst
521 int to_consume = 0;
522 bool result = false;
523 unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
524
525 //consume samples until d_counter will be equal to sample_nr_near_sch_start
526 if (d_counter < sample_nr_near_sch_start)
527 {
528 if (d_counter + nitems >= sample_nr_near_sch_start)
529 {
530 to_consume = sample_nr_near_sch_start - d_counter;
531 }
532 else
533 {
534 to_consume = nitems;
piotr437f5462014-02-04 17:57:25 +0100535 }
536 result = false;
piotrd0bf1492014-02-05 17:27:32 +0100537 }
538 else
539 {
piotr437f5462014-02-04 17:57:25 +0100540 to_consume = 0;
541 result = true;
piotr437f5462014-02-04 17:57:25 +0100542 }
543
piotrd0bf1492014-02-05 17:27:32 +0100544 d_counter += to_consume;
545 consume_each(to_consume);
546 return result;
547}
548
549int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
550{
551 vector_complex correlation_buffer;
552 vector_float power_buffer;
553 vector_float window_energy_buffer;
554
555 int strongest_window_nr;
556 int burst_start = 0;
557 int chan_imp_resp_center = 0;
558 float max_correlation = 0;
559 float energy = 0;
560
561 for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++)
piotr437f5462014-02-04 17:57:25 +0100562 {
piotr437f5462014-02-04 17:57:25 +0100563 gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
564 correlation_buffer.push_back(correlation);
565 power_buffer.push_back(std::pow(abs(correlation), 2));
piotrd0bf1492014-02-05 17:27:32 +0100566 }
piotr437f5462014-02-04 17:57:25 +0100567
piotrd0bf1492014-02-05 17:27:32 +0100568 //compute window energies
569 vector_float::iterator iter = power_buffer.begin();
570 bool loop_end = false;
571 while (iter != power_buffer.end())
572 {
piotr437f5462014-02-04 17:57:25 +0100573 vector_float::iterator iter_ii = iter;
574 energy = 0;
575
piotrd0bf1492014-02-05 17:27:32 +0100576 for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++)
577 {
578 if (iter_ii == power_buffer.end())
579 {
580 loop_end = true;
581 break;
582 }
583 energy += (*iter_ii);
piotr437f5462014-02-04 17:57:25 +0100584 }
piotrd0bf1492014-02-05 17:27:32 +0100585 if (loop_end)
586 {
587 break;
piotr437f5462014-02-04 17:57:25 +0100588 }
589 iter++;
590 window_energy_buffer.push_back(energy);
piotrd0bf1492014-02-05 17:27:32 +0100591 }
piotr437f5462014-02-04 17:57:25 +0100592
piotrd0bf1492014-02-05 17:27:32 +0100593 strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
piotr437f5462014-02-04 17:57:25 +0100594 // d_channel_imp_resp.clear();
595
piotrd0bf1492014-02-05 17:27:32 +0100596 max_correlation = 0;
597 for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++)
598 {
piotr437f5462014-02-04 17:57:25 +0100599 gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
piotrd0bf1492014-02-05 17:27:32 +0100600 if (abs(correlation) > max_correlation)
601 {
602 chan_imp_resp_center = ii;
603 max_correlation = abs(correlation);
piotr437f5462014-02-04 17:57:25 +0100604 }
piotrd0bf1492014-02-05 17:27:32 +0100605 // d_channel_imp_resp.push_back(correlation);
piotr437f5462014-02-04 17:57:25 +0100606 chan_imp_resp[ii] = correlation;
piotr437f5462014-02-04 17:57:25 +0100607 }
608
piotrd0bf1492014-02-05 17:27:32 +0100609 burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
610 return burst_start;
611}
piotr437f5462014-02-04 17:57:25 +0100612
613
piotrd0bf1492014-02-05 17:27:32 +0100614
615void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
616{
617 float output[BURST_SIZE];
618 gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
619 gr_complex rhh[CHAN_IMP_RESP_LENGTH];
620 gr_complex filtered_burst[BURST_SIZE];
621 int start_state = 3;
622 unsigned int stop_states[2] = {4, 12};
623
624 autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
625 for (int ii = 0; ii < (d_chan_imp_length); ii++)
piotr437f5462014-02-04 17:57:25 +0100626 {
piotr437f5462014-02-04 17:57:25 +0100627 rhh[ii] = conj(rhh_temp[ii*d_OSR]);
piotr437f5462014-02-04 17:57:25 +0100628 }
629
piotrd0bf1492014-02-05 17:27:32 +0100630 mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
631
632 viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
633
634 for (int i = 0; i < BURST_SIZE ; i++)
piotr437f5462014-02-04 17:57:25 +0100635 {
piotrd0bf1492014-02-05 17:27:32 +0100636 output_binary[i] = (output[i] > 0);
637 }
638}
piotr437f5462014-02-04 17:57:25 +0100639
piotrd0bf1492014-02-05 17:27:32 +0100640//TODO consider placing this funtion in a separate class for signal processing
641void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
642{
643 gr_complex j = gr_complex(0.0, 1.0);
piotr437f5462014-02-04 17:57:25 +0100644
piotrd0bf1492014-02-05 17:27:32 +0100645 int current_symbol;
646 int encoded_symbol;
647 int previous_symbol = 2 * input[0] - 1;
648 gmsk_output[0] = start_point;
649
650 for (int i = 1; i < nitems; i++)
651 {
piotr437f5462014-02-04 17:57:25 +0100652 //change bits representation to NRZ
653 current_symbol = 2 * input[i] - 1;
654 //differentially encode
655 encoded_symbol = current_symbol * previous_symbol;
656 //and do gmsk mapping
657 gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
658 previous_symbol = current_symbol;
piotr437f5462014-02-04 17:57:25 +0100659 }
piotrd0bf1492014-02-05 17:27:32 +0100660}
piotr437f5462014-02-04 17:57:25 +0100661
piotrd0bf1492014-02-05 17:27:32 +0100662//TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing
663gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
664{
665 gr_complex result(0.0, 0.0);
666 int sample_number = 0;
667
668 for (int ii = 0; ii < length; ii++)
piotr437f5462014-02-04 17:57:25 +0100669 {
piotr437f5462014-02-04 17:57:25 +0100670 sample_number = (ii * d_OSR) ;
671 result += sequence[ii] * conj(input[sample_number]);
piotr437f5462014-02-04 17:57:25 +0100672 }
673
piotrd0bf1492014-02-05 17:27:32 +0100674 result = result / gr_complex(length, 0);
675 return result;
676}
677
678//computes autocorrelation for positive arguments
679//TODO consider placing this funtion in a separate class for signal processing
680inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
681{
682 int i, k;
683 for (k = nitems - 1; k >= 0; k--)
piotr437f5462014-02-04 17:57:25 +0100684 {
piotr437f5462014-02-04 17:57:25 +0100685 out[k] = gr_complex(0, 0);
piotrd0bf1492014-02-05 17:27:32 +0100686 for (i = k; i < nitems; i++)
687 {
688 out[k] += input[i] * conj(input[i-k]);
piotr437f5462014-02-04 17:57:25 +0100689 }
piotr437f5462014-02-04 17:57:25 +0100690 }
piotrd0bf1492014-02-05 17:27:32 +0100691}
piotr437f5462014-02-04 17:57:25 +0100692
piotrd0bf1492014-02-05 17:27:32 +0100693//TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing
694inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
695{
696 int ii = 0, n, a;
697
698 for (n = 0; n < nitems; n++)
piotr437f5462014-02-04 17:57:25 +0100699 {
piotr437f5462014-02-04 17:57:25 +0100700 a = n * d_OSR;
701 output[n] = 0;
702 ii = 0;
703
piotrd0bf1492014-02-05 17:27:32 +0100704 while (ii < filter_length)
705 {
706 if ((a + ii) >= nitems*d_OSR)
707 break;
708 output[n] += input[a+ii] * filter[ii];
709 ii++;
piotr437f5462014-02-04 17:57:25 +0100710 }
piotr437f5462014-02-04 17:57:25 +0100711 }
piotrd0bf1492014-02-05 17:27:32 +0100712}
piotr437f5462014-02-04 17:57:25 +0100713
piotrd0bf1492014-02-05 17:27:32 +0100714//TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
715//TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
716//especially computations of strongest_window_nr
piotr7e3b0db2014-02-05 22:44:30 +0100717int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, float *corr_max, int bcc)
piotrd0bf1492014-02-05 17:27:32 +0100718{
719 vector_complex correlation_buffer;
720 vector_float power_buffer;
721 vector_float window_energy_buffer;
piotr437f5462014-02-04 17:57:25 +0100722
piotrd0bf1492014-02-05 17:27:32 +0100723 int strongest_window_nr;
724 int burst_start = 0;
725 int chan_imp_resp_center = 0;
726 float max_correlation = 0;
727 float energy = 0;
piotr437f5462014-02-04 17:57:25 +0100728
piotrd0bf1492014-02-05 17:27:32 +0100729 int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
piotr7c82b172014-02-08 14:15:27 +0100730 int search_start_pos = search_center + 1 - 5*d_OSR;
piotr437f5462014-02-04 17:57:25 +0100731 // int search_start_pos = search_center - d_chan_imp_length * d_OSR;
piotrd0bf1492014-02-05 17:27:32 +0100732 int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
piotr437f5462014-02-04 17:57:25 +0100733
piotrd0bf1492014-02-05 17:27:32 +0100734 for (int ii = search_start_pos; ii < search_stop_pos; ii++)
735 {
piotr437f5462014-02-04 17:57:25 +0100736 gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
737
738 correlation_buffer.push_back(correlation);
739 power_buffer.push_back(std::pow(abs(correlation), 2));
piotrd0bf1492014-02-05 17:27:32 +0100740 }
piotr437f5462014-02-04 17:57:25 +0100741
piotrd0bf1492014-02-05 17:27:32 +0100742 //compute window energies
743 vector_float::iterator iter = power_buffer.begin();
744 bool loop_end = false;
745 while (iter != power_buffer.end())
746 {
piotr437f5462014-02-04 17:57:25 +0100747 vector_float::iterator iter_ii = iter;
748 energy = 0;
749
piotrd0bf1492014-02-05 17:27:32 +0100750 for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++)
751 {
piotrd0bf1492014-02-05 17:27:32 +0100752 if (iter_ii == power_buffer.end())
753 {
754 loop_end = true;
755 break;
756 }
757 energy += (*iter_ii);
piotr437f5462014-02-04 17:57:25 +0100758 }
piotrd0bf1492014-02-05 17:27:32 +0100759 if (loop_end)
760 {
761 break;
piotr437f5462014-02-04 17:57:25 +0100762 }
763 iter++;
764
765 window_energy_buffer.push_back(energy);
piotrd0bf1492014-02-05 17:27:32 +0100766 }
piotr437f5462014-02-04 17:57:25 +0100767
piotr6d152d92014-02-21 00:02:44 +0100768 strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
769 strongest_window_nr = strongest_window_nr-d_OSR;
770
piotrd0bf1492014-02-05 17:27:32 +0100771 max_correlation = 0;
772 for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++)
773 {
piotr437f5462014-02-04 17:57:25 +0100774 gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
piotrd0bf1492014-02-05 17:27:32 +0100775 if (abs(correlation) > max_correlation)
776 {
777 chan_imp_resp_center = ii;
778 max_correlation = abs(correlation);
piotr437f5462014-02-04 17:57:25 +0100779 }
piotrd0bf1492014-02-05 17:27:32 +0100780 // d_channel_imp_resp.push_back(correlation);
piotr437f5462014-02-04 17:57:25 +0100781 chan_imp_resp[ii] = correlation;
piotr437f5462014-02-04 17:57:25 +0100782 }
piotr7c82b172014-02-08 14:15:27 +0100783
piotr7e3b0db2014-02-05 22:44:30 +0100784 *corr_max = max_correlation;
785 // We want to use the first sample of the impulse response, and the
piotrd0bf1492014-02-05 17:27:32 +0100786 // corresponding samples of the received signal.
787 // the variable sync_w should contain the beginning of the used part of
788 // training sequence, which is 3+57+1+6=67 bits into the burst. That is
789 // we have that sync_t16 equals first sample in bit number 67.
790
piotr7c82b172014-02-08 14:15:27 +0100791 DCOUT("strongest_window_nr_new: " << strongest_window_nr);
piotr6d152d92014-02-21 00:02:44 +0100792 burst_start = search_start_pos + strongest_window_nr - TRAIN_POS * d_OSR;
piotr7c82b172014-02-08 14:15:27 +0100793
794 DCOUT("burst_start: " << burst_start);
piotrd0bf1492014-02-05 17:27:32 +0100795 return burst_start;
796}
piotr437f5462014-02-04 17:57:25 +0100797
798
piotr6d152d92014-02-21 00:02:44 +0100799void receiver_impl::send_burst(burst_counter burst_nr, const unsigned char * burst_binary, burst_type b_type)
piotrd0bf1492014-02-05 17:27:32 +0100800{
piotr7c82b172014-02-08 14:15:27 +0100801
piotr6d152d92014-02-21 00:02:44 +0100802 boost::scoped_ptr<gsmtap_hdr> tap_header(new gsmtap_hdr());
803
804 tap_header->version = GSMTAP_VERSION;
805 tap_header->hdr_len = BURST_SIZE/4;
806 tap_header->type = GSMTAP_TYPE_UM_BURST;
807 tap_header->timeslot = static_cast<uint8_t>(d_burst_nr.get_timeslot_nr());
808 tap_header->frame_number = d_burst_nr.get_frame_nr();
809 tap_header->sub_type = static_cast<uint8_t>(b_type);
810 tap_header->arfcn = d_arfcn;
811 tap_header->signal_dbm = static_cast<int8_t>(d_signal_dbm);
812 pmt::pmt_t header_blob=pmt::make_blob(tap_header.get(),sizeof(gsmtap_hdr));
813 pmt::pmt_t burst_binary_blob=pmt::make_blob(burst_binary,BURST_SIZE);
814 pmt::pmt_t msg = pmt::cons(header_blob, burst_binary_blob);
815
816 message_port_pub(pmt::mp("bursts"), msg);
piotrd0bf1492014-02-05 17:27:32 +0100817}
piotr6d152d92014-02-21 00:02:44 +0100818
piotrd0bf1492014-02-05 17:27:32 +0100819void receiver_impl::configure_receiver()
820{
821 d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
822 d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
piotr437f5462014-02-04 17:57:25 +0100823
piotrd0bf1492014-02-05 17:27:32 +0100824 d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
825 d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
piotr437f5462014-02-04 17:57:25 +0100826
827 // d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_26);
828 // d_channel_conf.set_burst_types(TIMESLOT1, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
829 // d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_26);
830 // d_channel_conf.set_burst_types(TIMESLOT2, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
831 // d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_26);
832 // d_channel_conf.set_burst_types(TIMESLOT3, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
833 // d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_26);
834 // d_channel_conf.set_burst_types(TIMESLOT4, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
835 // d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_26);
836 // d_channel_conf.set_burst_types(TIMESLOT5, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
837 // d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_26);
838 // d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
839 // d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26);
840 // d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
piotr7e3b0db2014-02-05 22:44:30 +0100841
piotrd0bf1492014-02-05 17:27:32 +0100842 d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
843 d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
844 d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
845 d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
846 d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
847 d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
848 d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
849 d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
850 d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
851 d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
852 d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
853 d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
854 d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
855 d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
856
857}
piotr437f5462014-02-04 17:57:25 +0100858
859
piotrd0bf1492014-02-05 17:27:32 +0100860} /* namespace gsm */
piotr437f5462014-02-04 17:57:25 +0100861} /* namespace gr */
862