Initial commit - gsm-receiver with removed quick hacks
diff --git a/lib/receiver_impl.cc b/lib/receiver_impl.cc
new file mode 100644
index 0000000..689079b
--- /dev/null
+++ b/lib/receiver_impl.cc
@@ -0,0 +1,770 @@
+/* -*- c++ -*- */
+/* 
+ * Copyright 2014 <+YOU OR YOUR COMPANY+>.
+ * 
+ * This is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 3, or (at your option)
+ * any later version.
+ * 
+ * This software is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ * 
+ * You should have received a copy of the GNU General Public License
+ * along with this software; see the file COPYING.  If not, write to
+ * the Free Software Foundation, Inc., 51 Franklin Street,
+ * Boston, MA 02110-1301, USA.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <gnuradio/io_signature.h>
+#include "receiver_impl.h"
+
+#include <gnuradio/io_signature.h>
+#include <gnuradio/math.h>
+#include <math.h>
+#include <boost/circular_buffer.hpp>
+#include <algorithm>
+#include <numeric>
+#include <viterbi_detector.h>
+#include <string.h>
+#include <sch.h>
+#include <iostream>
+#include <iomanip>
+
+#include <assert.h>
+
+#define SYNC_SEARCH_RANGE 30
+
+namespace gr {
+  namespace gsm {
+
+    typedef std::list<float> list_float;
+    typedef std::vector<float> vector_float;
+
+    typedef boost::circular_buffer<float> circular_buffer_float;
+
+    receiver::sptr
+    receiver::make(feval_dd * tuner, int osr)
+    {
+      return gnuradio::get_initial_sptr
+        (new receiver_impl(tuner, osr));
+    }
+
+    /*
+     * The private constructor
+     */
+    receiver_impl::receiver_impl(feval_dd * tuner, int osr)
+      : gr::block("receiver",
+              gr::io_signature::make(1, 1, sizeof(gr_complex)),
+              gr::io_signature::make(0, 1, 142 * sizeof(float))),
+            d_OSR(osr),
+            d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
+            d_tuner(tuner),
+            d_counter(0),
+            d_fcch_start_pos(0),
+            d_freq_offset(0),
+            d_state(first_fcch_search),
+            d_burst_nr(osr),
+            d_failed_sch(0)
+    {
+      int i;
+      gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
+      for (i = 0; i < TRAIN_SEQ_NUM; i++) {
+        gr_complex startpoint;
+        if (i == 6 || i == 7) {                           //this is nasty hack
+          startpoint = gr_complex(-1.0, 0.0);   //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
+        } else {
+          startpoint = gr_complex(1.0, 0.0);    //I've checked this hack for bcc==0,1,2,3,4,6
+        }                                       //I don't know what about bcc==5 and 7 yet
+        //TODO:find source of this situation - this is purely mathematical problem I guess
+
+        gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
+      }    
+    }
+
+    /*
+     * Our virtual destructor.
+     */
+    receiver_impl::~receiver_impl()
+    {
+    }
+
+    void receiver_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
+    {
+      ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
+    }
+
+
+    int 
+    receiver_impl::general_work(int noutput_items,
+           gr_vector_int &ninput_items,
+	       gr_vector_const_void_star &input_items,
+	       gr_vector_void_star &output_items)
+    {
+      const gr_complex *input = (const gr_complex *) input_items[0];
+      //float *out = (float *) output_items[0];
+      int produced_out = 0;  //how many output elements were produced - this isn't used yet
+      //probably the gsm receiver will be changed into sink so this variable won't be necessary
+      switch (d_state) {
+          //bootstrapping
+        case first_fcch_search:
+          if (find_fcch_burst(input, ninput_items[0])) { //find frequency correction burst in the input buffer
+            set_frequency(d_freq_offset);                //if fcch search is successful set frequency offset
+            //produced_out = 0;
+            d_state = next_fcch_search;
+          } else {
+            //produced_out = 0;
+            d_state = first_fcch_search;
+          }
+          break;
+
+        case next_fcch_search: {                         //this state is used because it takes some time (a bunch of buffered samples)
+            COUT("fcch");
+	    float prev_freq_offset = d_freq_offset;        //before previous set_frequqency cause change
+            if (find_fcch_burst(input, ninput_items[0])) {
+              if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
+                set_frequency(d_freq_offset);              //call set_frequncy only frequency offset change is greater than some value
+              }
+              //produced_out = 0;
+              d_state = sch_search;
+            } else {
+              //produced_out = 0;
+              d_state = next_fcch_search;
+            }
+            break;
+          }
+
+
+        case sch_search: {
+            vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
+            int t1, t2, t3;
+            int burst_start = 0;
+            unsigned char output_binary[BURST_SIZE];
+
+            if (reach_sch_burst(ninput_items[0])) {                              //wait for a SCH burst
+              burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
+              detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
+              if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
+                COUT("sch burst_start: " << burst_start);
+                COUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
+                d_burst_nr.set(t1, t2, t3, 0);                                  //set counter of bursts value
+
+                //configure the receiver - tell him where to find which burst type
+                d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51);  //in the timeslot nr.0 bursts changes according to t3 counter
+                configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+                d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);  //tell where to find fcch bursts
+                d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst);     //sch bursts
+                d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
+                d_burst_nr++;
+
+                consume_each(burst_start + BURST_SIZE * d_OSR);   //consume samples up to next guard period
+                d_state = synchronized;
+              } else {
+                d_state = next_fcch_search;                       //if there is error in the sch burst go back to fcch search phase
+              }
+            } else {
+              d_state = sch_search;
+            }
+            break;
+          }
+          //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
+        case synchronized: {
+            vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
+            int burst_start;
+            int offset = 0;
+            int to_consume = 0;
+            unsigned char output_binary[BURST_SIZE];
+
+            burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
+
+            switch (b_type) {
+              case fcch_burst: {                                                                    //if it's FCCH  burst
+                  const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
+                  const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
+                  double freq_offset = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it
+
+                  d_freq_offset_vals.push_front(freq_offset);
+                  //process_normal_burst(d_burst_nr, fc_fb);
+                  if (d_freq_offset_vals.size() >= 10) {
+                    double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
+                    double mean_offset = sum / d_freq_offset_vals.size();                           //compute mean
+                    d_freq_offset_vals.clear();
+                    if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET) {
+                      d_freq_offset -= mean_offset;                                                 //and adjust frequency if it have changed beyond
+                      set_frequency(d_freq_offset);                                                 //some limit
+                      DCOUT("mean_offset: " << mean_offset);
+                      DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
+                    }
+                  }
+                }
+                break;
+              case sch_burst: {                                                                    //if it's SCH burst
+                  int t1, t2, t3, d_ncc, d_bcc;
+                  burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
+                  detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);           //MLSE detection of bits
+                  //process_normal_burst(d_burst_nr, output_binary);
+                  if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {         //and decode SCH data
+                    // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
+                    d_failed_sch = 0;
+                    DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
+                    offset =  burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
+                    DCOUT(offset);
+                    to_consume += offset;                                                          //adjust with offset number of samples to be consumed
+                  } else {
+                    d_failed_sch++;
+                    if (d_failed_sch >= MAX_SCH_ERRORS) {
+    //                   d_state = next_fcch_search;        //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
+    //                   d_freq_offset_vals.clear();
+                      DCOUT("many sch decoding errors");
+                    }
+                  }
+                }
+                break;
+
+              case normal_burst:                                                                  //if it's normal burst
+                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc); //get channel impulse response for given training sequence number - d_bcc
+                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);            //MLSE detection of bits
+                process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+                break;
+
+              case dummy_or_normal: {
+                  burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY);
+                  detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
+
+                  std::vector<unsigned char> v(20);
+                  std::vector<unsigned char>::iterator it;
+                  it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin());
+                  int different_bits = (it - v.begin());
+                  
+                  if (different_bits > 2) {
+                    burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc);
+                    detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
+                    //if (!output_binary[0] && !output_binary[1] && !output_binary[2]) {
+                      COUT("Normal burst");
+                      process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+                    //} 
+                  } else {
+                     //process_normal_burst(d_burst_nr, dummy_burst);
+                  }
+                }
+              case rach_burst:
+                //implementation of this channel isn't possible in current gsm_receiver
+                //it would take some realtime processing, counter of samples from USRP to
+                //stay synchronized with this device and possibility to switch frequency from  uplink
+                //to C0 (where sch is) back and forth
+
+                break;
+              case dummy:                                                         //if it's dummy
+                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY); //read dummy
+                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);   // but as far as I know it's pointless
+                break;
+              case empty:   //if it's empty burst
+                break;      //do nothing
+            }
+
+            d_burst_nr++;   //go to next burst
+
+            to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
+            //and add offset which is introduced by
+            //0.25 fractional part of a guard period
+            //burst_number computes this offset
+            //but choice of this class to do this was random
+            consume_each(to_consume);
+          }
+          break;
+  }
+
+  return produced_out;
+    }
+
+
+    bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems)
+    {
+      circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
+      //best match for FCCH burst
+      float phase_diff = 0;
+      gr_complex conjprod;
+      int start_pos = -1;
+      int hit_count = 0;
+      int miss_count = 0;
+      float min_phase_diff;
+      float max_phase_diff;
+      double best_sum = 0;
+      float lowest_max_min_diff = 99999;
+
+      int to_consume = 0;
+      int sample_number = 0;
+      bool end = false;
+      bool result = false;
+      circular_buffer_float::iterator buffer_iter;
+
+      /**@name Possible states of FCCH search algorithm*/
+      //@{
+      enum states {
+        init,               ///< initialize variables
+        search,             ///< search for positive samples
+        found_something,    ///< search for FCCH and the best position of it
+        fcch_found,         ///< when FCCH was found
+        search_fail         ///< when there is no FCCH in the input vector
+      } fcch_search_state;
+      //@}
+
+      fcch_search_state = init;
+
+      while (!end) {
+        switch (fcch_search_state) {
+
+          case init: //initialize variables
+            hit_count = 0;
+            miss_count = 0;
+            start_pos = -1;
+            lowest_max_min_diff = 99999;
+            phase_diff_buffer.clear();
+            fcch_search_state = search;
+
+            break;
+
+          case search: // search for positive samples
+            sample_number++;
+
+            if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because
+              //there's too few samples left to look into,
+              to_consume = sample_number;                            //don't do anything with those samples which are left
+              //and consume only those which were checked
+              fcch_search_state = search_fail;
+            } else {
+              phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
+
+              if (phase_diff > 0) {                                 //if a positive phase difference was found
+                to_consume = sample_number;
+                fcch_search_state = found_something;                //switch to state in which searches for FCCH
+              } else {
+                fcch_search_state = search;
+              }
+            }
+
+            break;
+
+          case found_something: {// search for FCCH and the best position of it
+              if (phase_diff > 0) {
+                hit_count++;       //positive phase differencies increases hits_count
+              } else {
+                miss_count++;      //negative increases miss_count
+              }
+
+              if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
+                //if miss_count exceeds limit before hit_count
+                fcch_search_state = init;       //go to init
+                continue;
+              } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
+                //if hit_count and miss_count exceeds limit then FCCH was found
+                fcch_search_state = fcch_found;
+                continue;
+              } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
+                //find difference between minimal and maximal element in the buffer
+                //for FCCH this value should be low
+                //this part is searching for a region where this value is lowest
+                min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
+                max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
+
+                if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
+                  lowest_max_min_diff = max_phase_diff - min_phase_diff;
+                  start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
+                  best_sum = 0;
+
+                  for (buffer_iter = phase_diff_buffer.begin();
+                       buffer_iter != (phase_diff_buffer.end());
+                       buffer_iter++) {
+                    best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
+                  }
+                }
+              }
+
+              sample_number++;
+
+              if (sample_number >= nitems) {    //if there's no single sample left to check
+                fcch_search_state = search_fail;//FCCH search failed
+                continue;
+              }
+
+              phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
+              phase_diff_buffer.push_back(phase_diff);
+              fcch_search_state = found_something;
+            }
+            break;
+
+          case fcch_found: {
+              DCOUT("fcch found on position: " << d_counter + start_pos);
+              to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
+
+              d_fcch_start_pos = d_counter + start_pos;
+
+              //compute frequency offset
+              double phase_offset = best_sum / FCCH_HITS_NEEDED;
+              double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+              d_freq_offset -= freq_offset;
+              DCOUT("freq_offset: " << d_freq_offset);
+
+              end = true;
+              result = true;
+              break;
+            }
+
+          case search_fail:
+            end = true;
+            result = false;
+            break;
+        }
+      }
+
+      d_counter += to_consume;
+      consume_each(to_consume);
+
+      return result;
+    }
+
+
+    double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
+    {
+      double phase_sum = 0;
+      unsigned ii;
+
+      for (ii = first_sample; ii < last_sample; ii++) {
+        double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
+        phase_sum += phase_diff;
+      }
+
+      double phase_offset = phase_sum / (last_sample - first_sample);
+      double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+      return freq_offset;
+    }
+
+    void receiver_impl::set_frequency(double freq_offset)
+    {
+      d_tuner->calleval(freq_offset);
+    }
+
+    inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
+    {
+      gr_complex conjprod = val1 * conj(val2);
+      return fast_atan2f(imag(conjprod), real(conjprod));
+    }
+
+    bool receiver_impl::reach_sch_burst(const int nitems)
+    {
+      //it just consumes samples to get near to a SCH burst
+      int to_consume = 0;
+      bool result = false;
+      unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
+
+      //consume samples until d_counter will be equal to sample_nr_near_sch_start
+      if (d_counter < sample_nr_near_sch_start) {
+        if (d_counter + nitems >= sample_nr_near_sch_start) {
+          to_consume = sample_nr_near_sch_start - d_counter;
+        } else {
+          to_consume = nitems;
+        }
+        result = false;
+      } else {
+        to_consume = 0;
+        result = true;
+      }
+
+      d_counter += to_consume;
+      consume_each(to_consume);
+      return result;
+    }
+
+    int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
+    {
+      vector_complex correlation_buffer;
+      vector_float power_buffer;
+      vector_float window_energy_buffer;
+
+      int strongest_window_nr;
+      int burst_start = 0;
+      int chan_imp_resp_center = 0;
+      float max_correlation = 0;
+      float energy = 0;
+
+      for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
+        gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
+        correlation_buffer.push_back(correlation);
+        power_buffer.push_back(std::pow(abs(correlation), 2));
+      }
+
+      //compute window energies
+      vector_float::iterator iter = power_buffer.begin();
+      bool loop_end = false;
+      while (iter != power_buffer.end()) {
+        vector_float::iterator iter_ii = iter;
+        energy = 0;
+
+        for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) {
+          if (iter_ii == power_buffer.end()) {
+            loop_end = true;
+            break;
+          }
+          energy += (*iter_ii);
+        }
+        if (loop_end) {
+          break;
+        }
+        iter++;
+        window_energy_buffer.push_back(energy);
+      }
+
+      strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
+    //   d_channel_imp_resp.clear();
+
+      max_correlation = 0;
+      for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
+        gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
+        if (abs(correlation) > max_correlation) {
+          chan_imp_resp_center = ii;
+          max_correlation = abs(correlation);
+        }
+    //     d_channel_imp_resp.push_back(correlation);
+        chan_imp_resp[ii] = correlation;
+      }
+
+      burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
+      return burst_start;
+    }
+
+
+
+    void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
+    {
+      float output[BURST_SIZE];
+      gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
+      gr_complex rhh[CHAN_IMP_RESP_LENGTH];
+      gr_complex filtered_burst[BURST_SIZE];
+      int start_state = 3;
+      unsigned int stop_states[2] = {4, 12};
+
+      autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
+      for (int ii = 0; ii < (d_chan_imp_length); ii++) {
+        rhh[ii] = conj(rhh_temp[ii*d_OSR]);
+      }
+
+      mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
+
+      viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
+
+      for (int i = 0; i < BURST_SIZE ; i++) {
+        output_binary[i] = (output[i] > 0);
+      }
+    }
+
+    //TODO consider placing this funtion in a separate class for signal processing
+    void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
+    {
+      gr_complex j = gr_complex(0.0, 1.0);
+
+      int current_symbol;
+      int encoded_symbol;
+      int previous_symbol = 2 * input[0] - 1;
+      gmsk_output[0] = start_point;
+
+      for (int i = 1; i < nitems; i++) {
+        //change bits representation to NRZ
+        current_symbol = 2 * input[i] - 1;
+        //differentially encode
+        encoded_symbol = current_symbol * previous_symbol;
+        //and do gmsk mapping
+        gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
+        previous_symbol = current_symbol;
+      }
+    }
+
+    //TODO consider use of some generalized function for correlation and placing it in a separate class  for signal processing
+    gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
+    {
+      gr_complex result(0.0, 0.0);
+      int sample_number = 0;
+
+      for (int ii = 0; ii < length; ii++) {
+        sample_number = (ii * d_OSR) ;
+        result += sequence[ii] * conj(input[sample_number]);
+      }
+
+      result = result / gr_complex(length, 0);
+      return result;
+    }
+
+    //computes autocorrelation for positive arguments
+    //TODO consider placing this funtion in a separate class for signal processing
+    inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
+    {
+      int i, k;
+      for (k = nitems - 1; k >= 0; k--) {
+        out[k] = gr_complex(0, 0);
+        for (i = k; i < nitems; i++) {
+          out[k] += input[i] * conj(input[i-k]);
+        }
+      }
+    }
+
+    //TODO consider use of some generalized function for filtering and placing it in a separate class  for signal processing
+    inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
+    {
+      int ii = 0, n, a;
+
+      for (n = 0; n < nitems; n++) {
+        a = n * d_OSR;
+        output[n] = 0;
+        ii = 0;
+
+        while (ii < filter_length) {
+          if ((a + ii) >= nitems*d_OSR)
+            break;
+          output[n] += input[a+ii] * filter[ii];
+          ii++;
+        }
+      }
+    }
+
+    //TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
+    //TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
+    //especially computations of strongest_window_nr
+    int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, int bcc)
+    {
+      vector_complex correlation_buffer;
+      vector_float power_buffer;
+      vector_float window_energy_buffer;
+
+      int strongest_window_nr;
+      int burst_start = 0;
+      int chan_imp_resp_center = 0;
+      float max_correlation = 0;
+      float energy = 0;
+
+      int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
+      int search_start_pos = search_center + 1;
+    //   int search_start_pos = search_center -  d_chan_imp_length * d_OSR;
+      int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
+
+      for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
+        gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
+
+        correlation_buffer.push_back(correlation);
+        power_buffer.push_back(std::pow(abs(correlation), 2));
+      }
+
+      //compute window energies
+      vector_float::iterator iter = power_buffer.begin();
+      bool loop_end = false;
+      while (iter != power_buffer.end()) {
+        vector_float::iterator iter_ii = iter;
+        energy = 0;
+
+        for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++) {
+    //    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
+          if (iter_ii == power_buffer.end()) {
+            loop_end = true;
+            break;
+          }
+          energy += (*iter_ii);
+        }
+        if (loop_end) {
+          break;
+        }
+        iter++;
+
+        window_energy_buffer.push_back(energy);
+      }
+      //!why doesn't this work
+      int strongest_window_nr_new = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
+      strongest_window_nr = 3; //! so I have to override it here
+
+      max_correlation = 0;
+      for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
+        gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
+        if (abs(correlation) > max_correlation) {
+          chan_imp_resp_center = ii;
+          max_correlation = abs(correlation);
+        }
+    //     d_channel_imp_resp.push_back(correlation);
+        chan_imp_resp[ii] = correlation;
+      }
+      // We want to use the first sample of the impulseresponse, and the
+      // corresponding samples of the received signal.
+      // the variable sync_w should contain the beginning of the used part of
+      // training sequence, which is 3+57+1+6=67 bits into the burst. That is
+      // we have that sync_t16 equals first sample in bit number 67.
+
+      burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;
+
+      // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
+      // and it's maximum value is in the last bit period, so burst starts
+      // 2*Tb earlier
+      burst_start -= 2 * d_OSR;
+      burst_start += 2;
+      COUT("Poczatek ###############################");
+      std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " <<  strongest_window_nr << "\n";
+      COUT("burst_start_new: " << (search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR));
+      burst_start=(search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR)
+      return burst_start;
+    }
+
+
+    void receiver_impl::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary)
+    {
+       int ii;
+       //std::cout << "fn:" <<burst_nr.get_frame_nr() << " ts" << burst_nr.get_timeslot_nr() << " ";
+       for(ii=0;ii<148;ii++){
+          std::cout << std::setprecision(1) << static_cast<int>(burst_binary[ii]);
+       }
+       std::cout << std::endl;
+    }
+    //TODO: this shouldn't be here also - the same reason
+    void receiver_impl::configure_receiver()
+    {
+      d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+
+      d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
+
+    //  d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT1, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT2, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT3, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT4, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT5, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+    //  d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26);
+    //  d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
+      d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+      
+    }
+
+
+  } /* namespace gsm */
+} /* namespace gr */
+