Coding style change, debug pritfs
diff --git a/lib/receiver_impl.cc b/lib/receiver_impl.cc
index 689079b..2c2a0c3 100644
--- a/lib/receiver_impl.cc
+++ b/lib/receiver_impl.cc
@@ -1,17 +1,17 @@
 /* -*- c++ -*- */
-/* 
+/*
  * Copyright 2014 <+YOU OR YOUR COMPANY+>.
- * 
+ *
  * This is free software; you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation; either version 3, or (at your option)
  * any later version.
- * 
+ *
  * This software is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  * GNU General Public License for more details.
- * 
+ *
  * You should have received a copy of the GNU General Public License
  * along with this software; see the file COPYING.  If not, write to
  * the Free Software Foundation, Inc., 51 Franklin Street,
@@ -41,116 +41,136 @@
 
 #define SYNC_SEARCH_RANGE 30
 
-namespace gr {
-  namespace gsm {
+namespace gr
+{
+namespace gsm
+{
 
-    typedef std::list<float> list_float;
-    typedef std::vector<float> vector_float;
+typedef std::list<float> list_float;
+typedef std::vector<float> vector_float;
 
-    typedef boost::circular_buffer<float> circular_buffer_float;
+typedef boost::circular_buffer<float> circular_buffer_float;
 
-    receiver::sptr
-    receiver::make(feval_dd * tuner, int osr)
+receiver::sptr
+receiver::make(feval_dd * tuner, int osr)
+{
+    return gnuradio::get_initial_sptr
+           (new receiver_impl(tuner, osr));
+}
+
+/*
+ * The private constructor
+ */
+receiver_impl::receiver_impl(feval_dd * tuner, int osr)
+    : gr::block("receiver",
+                gr::io_signature::make(1, 1, sizeof(gr_complex)),
+                gr::io_signature::make(0, 1, 142 * sizeof(float))),
+    d_OSR(osr),
+    d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
+    d_tuner(tuner),
+    d_counter(0),
+    d_fcch_start_pos(0),
+    d_freq_offset(0),
+    d_state(first_fcch_search),
+    d_burst_nr(osr),
+    d_failed_sch(0)
+{
+    int i;
+    gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
+    for (i = 0; i < TRAIN_SEQ_NUM; i++)
     {
-      return gnuradio::get_initial_sptr
-        (new receiver_impl(tuner, osr));
-    }
-
-    /*
-     * The private constructor
-     */
-    receiver_impl::receiver_impl(feval_dd * tuner, int osr)
-      : gr::block("receiver",
-              gr::io_signature::make(1, 1, sizeof(gr_complex)),
-              gr::io_signature::make(0, 1, 142 * sizeof(float))),
-            d_OSR(osr),
-            d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
-            d_tuner(tuner),
-            d_counter(0),
-            d_fcch_start_pos(0),
-            d_freq_offset(0),
-            d_state(first_fcch_search),
-            d_burst_nr(osr),
-            d_failed_sch(0)
-    {
-      int i;
-      gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
-      for (i = 0; i < TRAIN_SEQ_NUM; i++) {
         gr_complex startpoint;
-        if (i == 6 || i == 7) {                           //this is nasty hack
-          startpoint = gr_complex(-1.0, 0.0);   //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
-        } else {
-          startpoint = gr_complex(1.0, 0.0);    //I've checked this hack for bcc==0,1,2,3,4,6
+        if (i == 6 || i == 7)                             //this is nasty hack
+        {
+            startpoint = gr_complex(-1.0, 0.0);   //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
+        }
+        else
+        {
+            startpoint = gr_complex(1.0, 0.0);    //I've checked this hack for bcc==0,1,2,3,4,6
         }                                       //I don't know what about bcc==5 and 7 yet
         //TODO:find source of this situation - this is purely mathematical problem I guess
 
         gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
-      }    
     }
+}
 
-    /*
-     * Our virtual destructor.
-     */
-    receiver_impl::~receiver_impl()
+/*
+ * Our virtual destructor.
+ */
+receiver_impl::~receiver_impl()
+{
+}
+
+void receiver_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
+{
+    ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
+}
+
+
+int
+receiver_impl::general_work(int noutput_items,
+                            gr_vector_int &ninput_items,
+                            gr_vector_const_void_star &input_items,
+                            gr_vector_void_star &output_items)
+{
+    const gr_complex *input = (const gr_complex *) input_items[0];
+    //float *out = (float *) output_items[0];
+    int produced_out = 0;  //how many output elements were produced - this isn't used yet
+    //probably the gsm receiver will be changed into sink so this variable won't be necessary
+    switch (d_state)
     {
-    }
-
-    void receiver_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
-    {
-      ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
-    }
-
-
-    int 
-    receiver_impl::general_work(int noutput_items,
-           gr_vector_int &ninput_items,
-	       gr_vector_const_void_star &input_items,
-	       gr_vector_void_star &output_items)
-    {
-      const gr_complex *input = (const gr_complex *) input_items[0];
-      //float *out = (float *) output_items[0];
-      int produced_out = 0;  //how many output elements were produced - this isn't used yet
-      //probably the gsm receiver will be changed into sink so this variable won't be necessary
-      switch (d_state) {
-          //bootstrapping
-        case first_fcch_search:
-          if (find_fcch_burst(input, ninput_items[0])) { //find frequency correction burst in the input buffer
+        //bootstrapping
+    case first_fcch_search:
+        COUT("FCCH search");
+        if (find_fcch_burst(input, ninput_items[0]))   //find frequency correction burst in the input buffer
+        {
             set_frequency(d_freq_offset);                //if fcch search is successful set frequency offset
             //produced_out = 0;
             d_state = next_fcch_search;
-          } else {
+        }
+        else
+        {
             //produced_out = 0;
             d_state = first_fcch_search;
-          }
-          break;
+        }
+        break;
 
-        case next_fcch_search: {                         //this state is used because it takes some time (a bunch of buffered samples)
-            COUT("fcch");
-	    float prev_freq_offset = d_freq_offset;        //before previous set_frequqency cause change
-            if (find_fcch_burst(input, ninput_items[0])) {
-              if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET) {
+    case next_fcch_search:                           //this state is used because it takes some time (a bunch of buffered samples)
+    {
+        COUT("NEXT FCCH search");
+        float prev_freq_offset = d_freq_offset;        //before previous set_frequqency cause change
+        if (find_fcch_burst(input, ninput_items[0]))
+        {
+            if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET)
+            {
                 set_frequency(d_freq_offset);              //call set_frequncy only frequency offset change is greater than some value
-              }
-              //produced_out = 0;
-              d_state = sch_search;
-            } else {
-              //produced_out = 0;
-              d_state = next_fcch_search;
             }
-            break;
-          }
+            //produced_out = 0;
+            d_state = sch_search;
+        }
+        else
+        {
+            //produced_out = 0;
+            d_state = next_fcch_search;
+        }
+        break;
+    }
 
 
-        case sch_search: {
-            vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
-            int t1, t2, t3;
-            int burst_start = 0;
-            unsigned char output_binary[BURST_SIZE];
+    case sch_search:
+    {
+        DCOUT("SCH search")    ;    
+        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
+        int t1, t2, t3;
+        int burst_start = 0;
+        unsigned char output_binary[BURST_SIZE];
 
-            if (reach_sch_burst(ninput_items[0])) {                              //wait for a SCH burst
-              burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
-              detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
-              if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) { //decode SCH burst
+        if (reach_sch_burst(ninput_items[0]))                                //wait for a SCH burst
+        {
+            burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
+            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
+            if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0)   //decode SCH burst
+            {
                 COUT("sch burst_start: " << burst_start);
                 COUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
                 d_burst_nr.set(t1, t2, t3, 0);                                  //set counter of bursts value
@@ -165,162 +185,186 @@
 
                 consume_each(burst_start + BURST_SIZE * d_OSR);   //consume samples up to next guard period
                 d_state = synchronized;
-              } else {
+            }
+            else
+            {
                 d_state = next_fcch_search;                       //if there is error in the sch burst go back to fcch search phase
-              }
-            } else {
-              d_state = sch_search;
             }
-            break;
-          }
-          //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
-        case synchronized: {
-            vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
-            int burst_start;
-            int offset = 0;
-            int to_consume = 0;
-            unsigned char output_binary[BURST_SIZE];
+        }
+        else
+        {
+            d_state = sch_search;
+        }
+        break;
+    }
+    //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
+    case synchronized:
+    {
+        DCOUT("Synchronized")            ;
+        vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
+        int burst_start;
+        int offset = 0;
+        int to_consume = 0;
+        unsigned char output_binary[BURST_SIZE];
 
-            burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
+        burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
 
-            switch (b_type) {
-              case fcch_burst: {                                                                    //if it's FCCH  burst
-                  const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
-                  const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
-                  double freq_offset = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it
+        switch (b_type)
+        {
+        case fcch_burst:                                                                      //if it's FCCH  burst
+        {
+            const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
+            const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
+            double freq_offset = compute_freq_offset(input, first_sample, last_sample);       //extract frequency offset from it
 
-                  d_freq_offset_vals.push_front(freq_offset);
-                  //process_normal_burst(d_burst_nr, fc_fb);
-                  if (d_freq_offset_vals.size() >= 10) {
-                    double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
-                    double mean_offset = sum / d_freq_offset_vals.size();                           //compute mean
+            d_freq_offset_vals.push_front(freq_offset);
+            process_normal_burst(d_burst_nr, fc_fb);
+            if (d_freq_offset_vals.size() >= 10)
+            {
+                double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
+                double mean_offset = sum / d_freq_offset_vals.size();                           //compute mean
+                d_freq_offset_vals.clear();
+                if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET)
+                {
+                    d_freq_offset -= mean_offset;                                                 //and adjust frequency if it have changed beyond
+                    set_frequency(d_freq_offset);                                                 //some limit
+                    DCOUT("mean_offset: " << mean_offset);
+                    DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
+                }
+            }
+        }
+        break;
+        case sch_burst:                                                                      //if it's SCH burst
+        {
+            int t1, t2, t3, d_ncc, d_bcc;
+            burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
+            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);           //MLSE detection of bits
+            process_normal_burst(d_burst_nr, output_binary);
+            if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0)           //and decode SCH data
+            {
+                // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
+                d_failed_sch = 0;
+                DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
+                offset =  burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
+                DCOUT(offset);
+                to_consume += offset;                                                          //adjust with offset number of samples to be consumed
+            }
+            else
+            {
+                d_failed_sch++;
+                if (d_failed_sch >= MAX_SCH_ERRORS)
+                {
+                    d_state = first_fcch_search;        //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
                     d_freq_offset_vals.clear();
-                    if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET) {
-                      d_freq_offset -= mean_offset;                                                 //and adjust frequency if it have changed beyond
-                      set_frequency(d_freq_offset);                                                 //some limit
-                      DCOUT("mean_offset: " << mean_offset);
-                      DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
-                    }
-                  }
+                    d_freq_offset=0;
+                    set_frequency(0);
+                    DCOUT("many sch decoding errors");
                 }
-                break;
-              case sch_burst: {                                                                    //if it's SCH burst
-                  int t1, t2, t3, d_ncc, d_bcc;
-                  burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]);                //get channel impulse response
-                  detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);           //MLSE detection of bits
-                  //process_normal_burst(d_burst_nr, output_binary);
-                  if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) {         //and decode SCH data
-                    // d_burst_nr.set(t1, t2, t3, 0);                                              //but only to check if burst_start value is correct
-                    d_failed_sch = 0;
-                    DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
-                    offset =  burst_start - floor((GUARD_PERIOD) * d_OSR);                         //compute offset from burst_start - burst should start after a guard period
-                    DCOUT(offset);
-                    to_consume += offset;                                                          //adjust with offset number of samples to be consumed
-                  } else {
-                    d_failed_sch++;
-                    if (d_failed_sch >= MAX_SCH_ERRORS) {
-    //                   d_state = next_fcch_search;        //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
-    //                   d_freq_offset_vals.clear();
-                      DCOUT("many sch decoding errors");
-                    }
-                  }
-                }
-                break;
-
-              case normal_burst:                                                                  //if it's normal burst
-                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc); //get channel impulse response for given training sequence number - d_bcc
-                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);            //MLSE detection of bits
-                process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
-                break;
-
-              case dummy_or_normal: {
-                  burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY);
-                  detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
-
-                  std::vector<unsigned char> v(20);
-                  std::vector<unsigned char>::iterator it;
-                  it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin());
-                  int different_bits = (it - v.begin());
-                  
-                  if (different_bits > 2) {
-                    burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc);
-                    detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
-                    //if (!output_binary[0] && !output_binary[1] && !output_binary[2]) {
-                      COUT("Normal burst");
-                      process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
-                    //} 
-                  } else {
-                     //process_normal_burst(d_burst_nr, dummy_burst);
-                  }
-                }
-              case rach_burst:
-                //implementation of this channel isn't possible in current gsm_receiver
-                //it would take some realtime processing, counter of samples from USRP to
-                //stay synchronized with this device and possibility to switch frequency from  uplink
-                //to C0 (where sch is) back and forth
-
-                break;
-              case dummy:                                                         //if it's dummy
-                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY); //read dummy
-                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);   // but as far as I know it's pointless
-                break;
-              case empty:   //if it's empty burst
-                break;      //do nothing
             }
+        }
+        break;
 
-            d_burst_nr++;   //go to next burst
+        case normal_burst:                                                                  //if it's normal burst
+            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc); //get channel impulse response for given training sequence number - d_bcc
+            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);            //MLSE detection of bits
+            process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+            break;
 
-            to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
-            //and add offset which is introduced by
-            //0.25 fractional part of a guard period
-            //burst_number computes this offset
-            //but choice of this class to do this was random
-            consume_each(to_consume);
-          }
-          break;
-  }
+        case dummy_or_normal:
+        {
+            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY);
+            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
 
-  return produced_out;
+            std::vector<unsigned char> v(20);
+            std::vector<unsigned char>::iterator it;
+            it = std::set_difference(output_binary + TRAIN_POS, output_binary + TRAIN_POS + 16, &train_seq[TS_DUMMY][5], &train_seq[TS_DUMMY][21], v.begin());
+            int different_bits = (it - v.begin());
+
+            if (different_bits > 2)
+            {
+                burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], d_bcc);
+                detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);
+                //if (!output_binary[0] && !output_binary[1] && !output_binary[2]) {
+                //  COUT("Normal burst");
+                process_normal_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
+                //}
+            }
+            else
+            {
+                process_normal_burst(d_burst_nr, dummy_burst);
+            }
+        }
+        case rach_burst:
+            //implementation of this channel isn't possible in current gsm_receiver
+            //it would take some realtime processing, counter of samples from USRP to
+            //stay synchronized with this device and possibility to switch frequency from  uplink
+            //to C0 (where sch is) back and forth
+
+            break;
+        case dummy:                                                         //if it's dummy
+            burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], TS_DUMMY); //read dummy
+            detect_burst(input, &channel_imp_resp[0], burst_start, output_binary);   // but as far as I know it's pointless
+            break;
+        case empty:   //if it's empty burst
+            break;      //do nothing
+        }
+
+        d_burst_nr++;   //go to next burst
+
+        to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset();  //consume samples of the burst up to next guard period
+        //and add offset which is introduced by
+        //0.25 fractional part of a guard period
+        //burst_number computes this offset
+        //but choice of this class to do this was random
+        consume_each(to_consume);
+    }
+    break;
     }
 
+    return produced_out;
+}
 
-    bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems)
+
+bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems)
+{
+    circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
+    //best match for FCCH burst
+    float phase_diff = 0;
+    gr_complex conjprod;
+    int start_pos = -1;
+    int hit_count = 0;
+    int miss_count = 0;
+    float min_phase_diff;
+    float max_phase_diff;
+    double best_sum = 0;
+    float lowest_max_min_diff = 99999;
+
+    int to_consume = 0;
+    int sample_number = 0;
+    bool end = false;
+    bool result = false;
+    circular_buffer_float::iterator buffer_iter;
+
+    /**@name Possible states of FCCH search algorithm*/
+    //@{
+    enum states
     {
-      circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
-      //best match for FCCH burst
-      float phase_diff = 0;
-      gr_complex conjprod;
-      int start_pos = -1;
-      int hit_count = 0;
-      int miss_count = 0;
-      float min_phase_diff;
-      float max_phase_diff;
-      double best_sum = 0;
-      float lowest_max_min_diff = 99999;
-
-      int to_consume = 0;
-      int sample_number = 0;
-      bool end = false;
-      bool result = false;
-      circular_buffer_float::iterator buffer_iter;
-
-      /**@name Possible states of FCCH search algorithm*/
-      //@{
-      enum states {
         init,               ///< initialize variables
         search,             ///< search for positive samples
         found_something,    ///< search for FCCH and the best position of it
         fcch_found,         ///< when FCCH was found
         search_fail         ///< when there is no FCCH in the input vector
-      } fcch_search_state;
-      //@}
+    } fcch_search_state;
+    //@}
 
-      fcch_search_state = init;
+    fcch_search_state = init;
 
-      while (!end) {
-        switch (fcch_search_state) {
+    while (!end)
+    {
+        switch (fcch_search_state)
+        {
 
-          case init: //initialize variables
+        case init: //initialize variables
             hit_count = 0;
             miss_count = 0;
             start_pos = -1;
@@ -330,250 +374,286 @@
 
             break;
 
-          case search: // search for positive samples
+        case search: // search for positive samples
             sample_number++;
 
-            if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) { //if it isn't possible to find FCCH because
-              //there's too few samples left to look into,
-              to_consume = sample_number;                            //don't do anything with those samples which are left
-              //and consume only those which were checked
-              fcch_search_state = search_fail;
-            } else {
-              phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
+            if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR)   //if it isn't possible to find FCCH because
+            {
+                //there's too few samples left to look into,
+                to_consume = sample_number;                            //don't do anything with those samples which are left
+                //and consume only those which were checked
+                fcch_search_state = search_fail;
+            }
+            else
+            {
+                phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
 
-              if (phase_diff > 0) {                                 //if a positive phase difference was found
-                to_consume = sample_number;
-                fcch_search_state = found_something;                //switch to state in which searches for FCCH
-              } else {
-                fcch_search_state = search;
-              }
+                if (phase_diff > 0)                                   //if a positive phase difference was found
+                {
+                    to_consume = sample_number;
+                    fcch_search_state = found_something;                //switch to state in which searches for FCCH
+                }
+                else
+                {
+                    fcch_search_state = search;
+                }
             }
 
             break;
 
-          case found_something: {// search for FCCH and the best position of it
-              if (phase_diff > 0) {
+        case found_something:  // search for FCCH and the best position of it
+        {
+            if (phase_diff > 0)
+            {
                 hit_count++;       //positive phase differencies increases hits_count
-              } else {
+            }
+            else
+            {
                 miss_count++;      //negative increases miss_count
-              }
+            }
 
-              if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR)) {
+            if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR))
+            {
                 //if miss_count exceeds limit before hit_count
                 fcch_search_state = init;       //go to init
                 continue;
-              } else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR)) {
+            }
+            else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR))
+            {
                 //if hit_count and miss_count exceeds limit then FCCH was found
                 fcch_search_state = fcch_found;
                 continue;
-              } else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) {
+            }
+            else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR))
+            {
                 //find difference between minimal and maximal element in the buffer
                 //for FCCH this value should be low
                 //this part is searching for a region where this value is lowest
                 min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
                 max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
 
-                if (lowest_max_min_diff > max_phase_diff - min_phase_diff) {
-                  lowest_max_min_diff = max_phase_diff - min_phase_diff;
-                  start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
-                  best_sum = 0;
+                if (lowest_max_min_diff > max_phase_diff - min_phase_diff)
+                {
+                    lowest_max_min_diff = max_phase_diff - min_phase_diff;
+                    start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
+                    best_sum = 0;
 
-                  for (buffer_iter = phase_diff_buffer.begin();
-                       buffer_iter != (phase_diff_buffer.end());
-                       buffer_iter++) {
-                    best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
-                  }
+                    for (buffer_iter = phase_diff_buffer.begin();
+                            buffer_iter != (phase_diff_buffer.end());
+                            buffer_iter++)
+                    {
+                        best_sum += *buffer_iter - (M_PI / 2) / d_OSR;   //store best value of phase offset sum
+                    }
                 }
-              }
+            }
 
-              sample_number++;
+            sample_number++;
 
-              if (sample_number >= nitems) {    //if there's no single sample left to check
+            if (sample_number >= nitems)      //if there's no single sample left to check
+            {
                 fcch_search_state = search_fail;//FCCH search failed
                 continue;
-              }
-
-              phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
-              phase_diff_buffer.push_back(phase_diff);
-              fcch_search_state = found_something;
             }
+
+            phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
+            phase_diff_buffer.push_back(phase_diff);
+            fcch_search_state = found_something;
+        }
+        break;
+
+        case fcch_found:
+        {
+            DCOUT("fcch found on position: " << d_counter + start_pos);
+            to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
+
+            d_fcch_start_pos = d_counter + start_pos;
+
+            //compute frequency offset
+            double phase_offset = best_sum / FCCH_HITS_NEEDED;
+            double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+            d_freq_offset -= freq_offset;
+            DCOUT("freq_offset: " << d_freq_offset);
+
+            end = true;
+            result = true;
             break;
+        }
 
-          case fcch_found: {
-              DCOUT("fcch found on position: " << d_counter + start_pos);
-              to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
-
-              d_fcch_start_pos = d_counter + start_pos;
-
-              //compute frequency offset
-              double phase_offset = best_sum / FCCH_HITS_NEEDED;
-              double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
-              d_freq_offset -= freq_offset;
-              DCOUT("freq_offset: " << d_freq_offset);
-
-              end = true;
-              result = true;
-              break;
-            }
-
-          case search_fail:
+        case search_fail:
             end = true;
             result = false;
             break;
         }
-      }
-
-      d_counter += to_consume;
-      consume_each(to_consume);
-
-      return result;
     }
 
+    d_counter += to_consume;
+    consume_each(to_consume);
 
-    double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
+    return result;
+}
+
+
+double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
+{
+    double phase_sum = 0;
+    unsigned ii;
+
+    for (ii = first_sample; ii < last_sample; ii++)
     {
-      double phase_sum = 0;
-      unsigned ii;
-
-      for (ii = first_sample; ii < last_sample; ii++) {
         double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
         phase_sum += phase_diff;
-      }
-
-      double phase_offset = phase_sum / (last_sample - first_sample);
-      double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
-      return freq_offset;
     }
 
-    void receiver_impl::set_frequency(double freq_offset)
-    {
-      d_tuner->calleval(freq_offset);
-    }
+    double phase_offset = phase_sum / (last_sample - first_sample);
+    double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
+    return freq_offset;
+}
 
-    inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
-    {
-      gr_complex conjprod = val1 * conj(val2);
-      return fast_atan2f(imag(conjprod), real(conjprod));
-    }
+void receiver_impl::set_frequency(double freq_offset)
+{
+    d_tuner->calleval(freq_offset);
+}
 
-    bool receiver_impl::reach_sch_burst(const int nitems)
-    {
-      //it just consumes samples to get near to a SCH burst
-      int to_consume = 0;
-      bool result = false;
-      unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
+inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
+{
+    gr_complex conjprod = val1 * conj(val2);
+    return fast_atan2f(imag(conjprod), real(conjprod));
+}
 
-      //consume samples until d_counter will be equal to sample_nr_near_sch_start
-      if (d_counter < sample_nr_near_sch_start) {
-        if (d_counter + nitems >= sample_nr_near_sch_start) {
-          to_consume = sample_nr_near_sch_start - d_counter;
-        } else {
-          to_consume = nitems;
+bool receiver_impl::reach_sch_burst(const int nitems)
+{
+    //it just consumes samples to get near to a SCH burst
+    int to_consume = 0;
+    bool result = false;
+    unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
+
+    //consume samples until d_counter will be equal to sample_nr_near_sch_start
+    if (d_counter < sample_nr_near_sch_start)
+    {
+        if (d_counter + nitems >= sample_nr_near_sch_start)
+        {
+            to_consume = sample_nr_near_sch_start - d_counter;
+        }
+        else
+        {
+            to_consume = nitems;
         }
         result = false;
-      } else {
+    }
+    else
+    {
         to_consume = 0;
         result = true;
-      }
-
-      d_counter += to_consume;
-      consume_each(to_consume);
-      return result;
     }
 
-    int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
+    d_counter += to_consume;
+    consume_each(to_consume);
+    return result;
+}
+
+int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
+{
+    vector_complex correlation_buffer;
+    vector_float power_buffer;
+    vector_float window_energy_buffer;
+
+    int strongest_window_nr;
+    int burst_start = 0;
+    int chan_imp_resp_center = 0;
+    float max_correlation = 0;
+    float energy = 0;
+
+    for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++)
     {
-      vector_complex correlation_buffer;
-      vector_float power_buffer;
-      vector_float window_energy_buffer;
-
-      int strongest_window_nr;
-      int burst_start = 0;
-      int chan_imp_resp_center = 0;
-      float max_correlation = 0;
-      float energy = 0;
-
-      for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++) {
         gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
         correlation_buffer.push_back(correlation);
         power_buffer.push_back(std::pow(abs(correlation), 2));
-      }
+    }
 
-      //compute window energies
-      vector_float::iterator iter = power_buffer.begin();
-      bool loop_end = false;
-      while (iter != power_buffer.end()) {
+    //compute window energies
+    vector_float::iterator iter = power_buffer.begin();
+    bool loop_end = false;
+    while (iter != power_buffer.end())
+    {
         vector_float::iterator iter_ii = iter;
         energy = 0;
 
-        for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++) {
-          if (iter_ii == power_buffer.end()) {
-            loop_end = true;
-            break;
-          }
-          energy += (*iter_ii);
+        for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++)
+        {
+            if (iter_ii == power_buffer.end())
+            {
+                loop_end = true;
+                break;
+            }
+            energy += (*iter_ii);
         }
-        if (loop_end) {
-          break;
+        if (loop_end)
+        {
+            break;
         }
         iter++;
         window_energy_buffer.push_back(energy);
-      }
+    }
 
-      strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
+    strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
     //   d_channel_imp_resp.clear();
 
-      max_correlation = 0;
-      for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++) {
+    max_correlation = 0;
+    for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++)
+    {
         gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
-        if (abs(correlation) > max_correlation) {
-          chan_imp_resp_center = ii;
-          max_correlation = abs(correlation);
+        if (abs(correlation) > max_correlation)
+        {
+            chan_imp_resp_center = ii;
+            max_correlation = abs(correlation);
         }
-    //     d_channel_imp_resp.push_back(correlation);
+        //     d_channel_imp_resp.push_back(correlation);
         chan_imp_resp[ii] = correlation;
-      }
-
-      burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
-      return burst_start;
     }
 
+    burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
+    return burst_start;
+}
 
 
-    void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
+
+void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
+{
+    float output[BURST_SIZE];
+    gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
+    gr_complex rhh[CHAN_IMP_RESP_LENGTH];
+    gr_complex filtered_burst[BURST_SIZE];
+    int start_state = 3;
+    unsigned int stop_states[2] = {4, 12};
+
+    autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
+    for (int ii = 0; ii < (d_chan_imp_length); ii++)
     {
-      float output[BURST_SIZE];
-      gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
-      gr_complex rhh[CHAN_IMP_RESP_LENGTH];
-      gr_complex filtered_burst[BURST_SIZE];
-      int start_state = 3;
-      unsigned int stop_states[2] = {4, 12};
-
-      autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
-      for (int ii = 0; ii < (d_chan_imp_length); ii++) {
         rhh[ii] = conj(rhh_temp[ii*d_OSR]);
-      }
-
-      mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
-
-      viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
-
-      for (int i = 0; i < BURST_SIZE ; i++) {
-        output_binary[i] = (output[i] > 0);
-      }
     }
 
-    //TODO consider placing this funtion in a separate class for signal processing
-    void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
+    mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
+
+    viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
+
+    for (int i = 0; i < BURST_SIZE ; i++)
     {
-      gr_complex j = gr_complex(0.0, 1.0);
+        output_binary[i] = (output[i] > 0);
+    }
+}
 
-      int current_symbol;
-      int encoded_symbol;
-      int previous_symbol = 2 * input[0] - 1;
-      gmsk_output[0] = start_point;
+//TODO consider placing this funtion in a separate class for signal processing
+void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
+{
+    gr_complex j = gr_complex(0.0, 1.0);
 
-      for (int i = 1; i < nitems; i++) {
+    int current_symbol;
+    int encoded_symbol;
+    int previous_symbol = 2 * input[0] - 1;
+    gmsk_output[0] = start_point;
+
+    for (int i = 1; i < nitems; i++)
+    {
         //change bits representation to NRZ
         current_symbol = 2 * input[i] - 1;
         //differentially encode
@@ -581,157 +661,170 @@
         //and do gmsk mapping
         gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
         previous_symbol = current_symbol;
-      }
     }
+}
 
-    //TODO consider use of some generalized function for correlation and placing it in a separate class  for signal processing
-    gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
+//TODO consider use of some generalized function for correlation and placing it in a separate class  for signal processing
+gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
+{
+    gr_complex result(0.0, 0.0);
+    int sample_number = 0;
+
+    for (int ii = 0; ii < length; ii++)
     {
-      gr_complex result(0.0, 0.0);
-      int sample_number = 0;
-
-      for (int ii = 0; ii < length; ii++) {
         sample_number = (ii * d_OSR) ;
         result += sequence[ii] * conj(input[sample_number]);
-      }
-
-      result = result / gr_complex(length, 0);
-      return result;
     }
 
-    //computes autocorrelation for positive arguments
-    //TODO consider placing this funtion in a separate class for signal processing
-    inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
+    result = result / gr_complex(length, 0);
+    return result;
+}
+
+//computes autocorrelation for positive arguments
+//TODO consider placing this funtion in a separate class for signal processing
+inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
+{
+    int i, k;
+    for (k = nitems - 1; k >= 0; k--)
     {
-      int i, k;
-      for (k = nitems - 1; k >= 0; k--) {
         out[k] = gr_complex(0, 0);
-        for (i = k; i < nitems; i++) {
-          out[k] += input[i] * conj(input[i-k]);
+        for (i = k; i < nitems; i++)
+        {
+            out[k] += input[i] * conj(input[i-k]);
         }
-      }
     }
+}
 
-    //TODO consider use of some generalized function for filtering and placing it in a separate class  for signal processing
-    inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
+//TODO consider use of some generalized function for filtering and placing it in a separate class  for signal processing
+inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
+{
+    int ii = 0, n, a;
+
+    for (n = 0; n < nitems; n++)
     {
-      int ii = 0, n, a;
-
-      for (n = 0; n < nitems; n++) {
         a = n * d_OSR;
         output[n] = 0;
         ii = 0;
 
-        while (ii < filter_length) {
-          if ((a + ii) >= nitems*d_OSR)
-            break;
-          output[n] += input[a+ii] * filter[ii];
-          ii++;
+        while (ii < filter_length)
+        {
+            if ((a + ii) >= nitems*d_OSR)
+                break;
+            output[n] += input[a+ii] * filter[ii];
+            ii++;
         }
-      }
     }
+}
 
-    //TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
-    //TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
-    //especially computations of strongest_window_nr
-    int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, int bcc)
-    {
-      vector_complex correlation_buffer;
-      vector_float power_buffer;
-      vector_float window_energy_buffer;
+//TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
+//TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
+//especially computations of strongest_window_nr
+int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, int bcc)
+{
+    vector_complex correlation_buffer;
+    vector_float power_buffer;
+    vector_float window_energy_buffer;
 
-      int strongest_window_nr;
-      int burst_start = 0;
-      int chan_imp_resp_center = 0;
-      float max_correlation = 0;
-      float energy = 0;
+    int strongest_window_nr;
+    int burst_start = 0;
+    int chan_imp_resp_center = 0;
+    float max_correlation = 0;
+    float energy = 0;
 
-      int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
-      int search_start_pos = search_center + 1;
+    int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
+    int search_start_pos = search_center + 1;
     //   int search_start_pos = search_center -  d_chan_imp_length * d_OSR;
-      int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
+    int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
 
-      for (int ii = search_start_pos; ii < search_stop_pos; ii++) {
+    for (int ii = search_start_pos; ii < search_stop_pos; ii++)
+    {
         gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
 
         correlation_buffer.push_back(correlation);
         power_buffer.push_back(std::pow(abs(correlation), 2));
-      }
+    }
 
-      //compute window energies
-      vector_float::iterator iter = power_buffer.begin();
-      bool loop_end = false;
-      while (iter != power_buffer.end()) {
+    //compute window energies
+    vector_float::iterator iter = power_buffer.begin();
+    bool loop_end = false;
+    while (iter != power_buffer.end())
+    {
         vector_float::iterator iter_ii = iter;
         energy = 0;
 
-        for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++) {
-    //    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
-          if (iter_ii == power_buffer.end()) {
-            loop_end = true;
-            break;
-          }
-          energy += (*iter_ii);
+        for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++)
+        {
+            //    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++, iter_ii++) {
+            if (iter_ii == power_buffer.end())
+            {
+                loop_end = true;
+                break;
+            }
+            energy += (*iter_ii);
         }
-        if (loop_end) {
-          break;
+        if (loop_end)
+        {
+            break;
         }
         iter++;
 
         window_energy_buffer.push_back(energy);
-      }
-      //!why doesn't this work
-      int strongest_window_nr_new = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
-      strongest_window_nr = 3; //! so I have to override it here
+    }
+    //!why doesn't this work
+    int strongest_window_nr_new = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
+    strongest_window_nr = 3; //! so I have to override it here
 
-      max_correlation = 0;
-      for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++) {
+    max_correlation = 0;
+    for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++)
+    {
         gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
-        if (abs(correlation) > max_correlation) {
-          chan_imp_resp_center = ii;
-          max_correlation = abs(correlation);
+        if (abs(correlation) > max_correlation)
+        {
+            chan_imp_resp_center = ii;
+            max_correlation = abs(correlation);
         }
-    //     d_channel_imp_resp.push_back(correlation);
+        //     d_channel_imp_resp.push_back(correlation);
         chan_imp_resp[ii] = correlation;
-      }
-      // We want to use the first sample of the impulseresponse, and the
-      // corresponding samples of the received signal.
-      // the variable sync_w should contain the beginning of the used part of
-      // training sequence, which is 3+57+1+6=67 bits into the burst. That is
-      // we have that sync_t16 equals first sample in bit number 67.
-
-      burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;
-
-      // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
-      // and it's maximum value is in the last bit period, so burst starts
-      // 2*Tb earlier
-      burst_start -= 2 * d_OSR;
-      burst_start += 2;
-      COUT("Poczatek ###############################");
-      std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " <<  strongest_window_nr << "\n";
-      COUT("burst_start_new: " << (search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR));
-      burst_start=(search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR)
-      return burst_start;
     }
+    // We want to use the first sample of the impulseresponse, and the
+    // corresponding samples of the received signal.
+    // the variable sync_w should contain the beginning of the used part of
+    // training sequence, which is 3+57+1+6=67 bits into the burst. That is
+    // we have that sync_t16 equals first sample in bit number 67.
+
+    burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;
+
+    // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
+    // and it's maximum value is in the last bit period, so burst starts
+    // 2*Tb earlier
+    burst_start -= 2 * d_OSR;
+    burst_start += 2;
+    //COUT("Poczatek ###############################");
+    //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " <<  strongest_window_nr << "\n";
+    //COUT("burst_start_new: " << (search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR));
+    burst_start=(search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR);
+    return burst_start;
+}
 
 
-    void receiver_impl::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary)
+void receiver_impl::process_normal_burst(burst_counter burst_nr, const unsigned char * burst_binary)
+{
+    int ii;
+    //std::cout << "fn:" <<burst_nr.get_frame_nr() << " ts" << burst_nr.get_timeslot_nr() << " ";
+    for(ii=0; ii<148; ii++)
     {
-       int ii;
-       //std::cout << "fn:" <<burst_nr.get_frame_nr() << " ts" << burst_nr.get_timeslot_nr() << " ";
-       for(ii=0;ii<148;ii++){
-          std::cout << std::setprecision(1) << static_cast<int>(burst_binary[ii]);
-       }
-       std::cout << std::endl;
+        std::cout << std::setprecision(1) << static_cast<int>(burst_binary[ii]) << " ";
     }
-    //TODO: this shouldn't be here also - the same reason
-    void receiver_impl::configure_receiver()
-    {
-      d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    std::cout << std::endl;
+}
+//TODO: this shouldn't be here also - the same reason
+void receiver_impl::configure_receiver()
+{
+    d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
 
-      d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
+    d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
 
     //  d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_26);
     //  d_channel_conf.set_burst_types(TIMESLOT1, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
@@ -747,24 +840,24 @@
     //  d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
     //  d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26);
     //  d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
-      d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
-      
-    }
+    d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+    d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
+    d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
+
+}
 
 
-  } /* namespace gsm */
+} /* namespace gsm */
 } /* namespace gr */