blob: 90eccc2f7cae7a908db2f3e93f4acf348bc762c5 [file] [log] [blame]
piotr437f5462014-02-04 17:57:25 +01001/* -*- c++ -*- */
piotrd0bf1492014-02-05 17:27:32 +01002/*
piotr437f5462014-02-04 17:57:25 +01003 * Copyright 2014 <+YOU OR YOUR COMPANY+>.
piotrd0bf1492014-02-05 17:27:32 +01004 *
piotr437f5462014-02-04 17:57:25 +01005 * This is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 3, or (at your option)
8 * any later version.
piotrd0bf1492014-02-05 17:27:32 +01009 *
piotr437f5462014-02-04 17:57:25 +010010 * This software is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
piotrd0bf1492014-02-05 17:27:32 +010014 *
piotr437f5462014-02-04 17:57:25 +010015 * You should have received a copy of the GNU General Public License
16 * along with this software; see the file COPYING. If not, write to
17 * the Free Software Foundation, Inc., 51 Franklin Street,
18 * Boston, MA 02110-1301, USA.
19 */
20
21#ifdef HAVE_CONFIG_H
22#include "config.h"
23#endif
24
25#include <gnuradio/io_signature.h>
26#include "receiver_impl.h"
27
28#include <gnuradio/io_signature.h>
29#include <gnuradio/math.h>
30#include <math.h>
31#include <boost/circular_buffer.hpp>
32#include <algorithm>
33#include <numeric>
34#include <viterbi_detector.h>
35#include <string.h>
36#include <sch.h>
37#include <iostream>
38#include <iomanip>
39
40#include <assert.h>
41
42#define SYNC_SEARCH_RANGE 30
43
piotrd0bf1492014-02-05 17:27:32 +010044namespace gr
45{
46namespace gsm
47{
piotr437f5462014-02-04 17:57:25 +010048
piotrd0bf1492014-02-05 17:27:32 +010049typedef std::list<float> list_float;
50typedef std::vector<float> vector_float;
piotr437f5462014-02-04 17:57:25 +010051
piotrd0bf1492014-02-05 17:27:32 +010052typedef boost::circular_buffer<float> circular_buffer_float;
piotr437f5462014-02-04 17:57:25 +010053
piotrd0bf1492014-02-05 17:27:32 +010054receiver::sptr
55receiver::make(feval_dd * tuner, int osr)
56{
57 return gnuradio::get_initial_sptr
58 (new receiver_impl(tuner, osr));
59}
60
61/*
62 * The private constructor
63 */
64receiver_impl::receiver_impl(feval_dd * tuner, int osr)
65 : gr::block("receiver",
66 gr::io_signature::make(1, 1, sizeof(gr_complex)),
piotr7c82b172014-02-08 14:15:27 +010067 gr::io_signature::make(0, 0, 0)),
piotrd0bf1492014-02-05 17:27:32 +010068 d_OSR(osr),
69 d_chan_imp_length(CHAN_IMP_RESP_LENGTH),
70 d_tuner(tuner),
71 d_counter(0),
72 d_fcch_start_pos(0),
73 d_freq_offset(0),
74 d_state(first_fcch_search),
75 d_burst_nr(osr),
76 d_failed_sch(0)
77{
piotr7c82b172014-02-08 14:15:27 +010078
piotrd0bf1492014-02-05 17:27:32 +010079 int i;
80 gmsk_mapper(SYNC_BITS, N_SYNC_BITS, d_sch_training_seq, gr_complex(0.0, -1.0));
81 for (i = 0; i < TRAIN_SEQ_NUM; i++)
piotr437f5462014-02-04 17:57:25 +010082 {
piotr437f5462014-02-04 17:57:25 +010083 gr_complex startpoint;
piotrd0bf1492014-02-05 17:27:32 +010084 if (i == 6 || i == 7) //this is nasty hack
85 {
86 startpoint = gr_complex(-1.0, 0.0); //if I don't change it here all bits of normal bursts for BTSes with bcc=6 will have reversed values
87 }
88 else
89 {
90 startpoint = gr_complex(1.0, 0.0); //I've checked this hack for bcc==0,1,2,3,4,6
piotr437f5462014-02-04 17:57:25 +010091 } //I don't know what about bcc==5 and 7 yet
92 //TODO:find source of this situation - this is purely mathematical problem I guess
93
94 gmsk_mapper(train_seq[i], N_TRAIN_BITS, d_norm_training_seq[i], startpoint);
piotr437f5462014-02-04 17:57:25 +010095 }
piotr7c82b172014-02-08 14:15:27 +010096 message_port_register_out(pmt::mp("bursts"));
piotrd0bf1492014-02-05 17:27:32 +010097}
piotr437f5462014-02-04 17:57:25 +010098
piotrd0bf1492014-02-05 17:27:32 +010099/*
100 * Our virtual destructor.
101 */
102receiver_impl::~receiver_impl()
103{
104}
105
106void receiver_impl::forecast(int noutput_items, gr_vector_int &ninput_items_required)
107{
108 ninput_items_required[0] = noutput_items * floor((TS_BITS + 2 * GUARD_PERIOD) * d_OSR);
109}
110
111
112int
113receiver_impl::general_work(int noutput_items,
114 gr_vector_int &ninput_items,
115 gr_vector_const_void_star &input_items,
116 gr_vector_void_star &output_items)
117{
118 const gr_complex *input = (const gr_complex *) input_items[0];
119 //float *out = (float *) output_items[0];
120 int produced_out = 0; //how many output elements were produced - this isn't used yet
121 //probably the gsm receiver will be changed into sink so this variable won't be necessary
piotr7c82b172014-02-08 14:15:27 +0100122
piotrd0bf1492014-02-05 17:27:32 +0100123 switch (d_state)
piotr437f5462014-02-04 17:57:25 +0100124 {
piotrd0bf1492014-02-05 17:27:32 +0100125 //bootstrapping
126 case first_fcch_search:
piotr7e3b0db2014-02-05 22:44:30 +0100127 DCOUT("FCCH search");
piotrd0bf1492014-02-05 17:27:32 +0100128 if (find_fcch_burst(input, ninput_items[0])) //find frequency correction burst in the input buffer
129 {
piotr5f1e1d32014-02-05 18:10:05 +0100130 //set_frequency(d_freq_offset); //if fcch search is successful set frequency offset
piotr7e3b0db2014-02-05 22:44:30 +0100131 DCOUT("Freq offset " << d_freq_offset);
piotr437f5462014-02-04 17:57:25 +0100132 //produced_out = 0;
133 d_state = next_fcch_search;
piotrd0bf1492014-02-05 17:27:32 +0100134 }
135 else
136 {
piotr437f5462014-02-04 17:57:25 +0100137 //produced_out = 0;
138 d_state = first_fcch_search;
piotrd0bf1492014-02-05 17:27:32 +0100139 }
140 break;
piotr437f5462014-02-04 17:57:25 +0100141
piotrd0bf1492014-02-05 17:27:32 +0100142 case next_fcch_search: //this state is used because it takes some time (a bunch of buffered samples)
143 {
piotr7e3b0db2014-02-05 22:44:30 +0100144 DCOUT("NEXT FCCH search");
piotrd0bf1492014-02-05 17:27:32 +0100145 float prev_freq_offset = d_freq_offset; //before previous set_frequqency cause change
146 if (find_fcch_burst(input, ninput_items[0]))
147 {
148 if (abs(prev_freq_offset - d_freq_offset) > FCCH_MAX_FREQ_OFFSET)
149 {
piotr5f1e1d32014-02-05 18:10:05 +0100150 //set_frequency(d_freq_offset); //call set_frequncy only frequency offset change is greater than some value
piotr7c82b172014-02-08 14:15:27 +0100151 COUT("Freq offset " << d_freq_offset);
piotr437f5462014-02-04 17:57:25 +0100152 }
piotrd0bf1492014-02-05 17:27:32 +0100153 //produced_out = 0;
154 d_state = sch_search;
155 }
156 else
157 {
158 //produced_out = 0;
159 d_state = next_fcch_search;
160 }
161 break;
162 }
piotr437f5462014-02-04 17:57:25 +0100163
164
piotrd0bf1492014-02-05 17:27:32 +0100165 case sch_search:
166 {
piotr7c82b172014-02-08 14:15:27 +0100167 DCOUT("SCH search");
piotrd0bf1492014-02-05 17:27:32 +0100168 vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
169 int t1, t2, t3;
170 int burst_start = 0;
171 unsigned char output_binary[BURST_SIZE];
piotr437f5462014-02-04 17:57:25 +0100172
piotrd0bf1492014-02-05 17:27:32 +0100173 if (reach_sch_burst(ninput_items[0])) //wait for a SCH burst
174 {
175 burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response from it
176 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //detect bits using MLSE detection
177 if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) //decode SCH burst
178 {
piotr7e3b0db2014-02-05 22:44:30 +0100179 //COUT("sch burst_start: " << burst_start);
180 //COUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
piotr437f5462014-02-04 17:57:25 +0100181 d_burst_nr.set(t1, t2, t3, 0); //set counter of bursts value
182
183 //configure the receiver - tell him where to find which burst type
184 d_channel_conf.set_multiframe_type(TIMESLOT0, multiframe_51); //in the timeslot nr.0 bursts changes according to t3 counter
185 configure_receiver();//TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
186 d_channel_conf.set_burst_types(TIMESLOT0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst); //tell where to find fcch bursts
187 d_channel_conf.set_burst_types(TIMESLOT0, SCH_FRAMES, sizeof(SCH_FRAMES) / sizeof(unsigned), sch_burst); //sch bursts
188 d_channel_conf.set_burst_types(TIMESLOT0, BCCH_FRAMES, sizeof(BCCH_FRAMES) / sizeof(unsigned), normal_burst);//!and maybe normal bursts of the BCCH logical channel
189 d_burst_nr++;
190
191 consume_each(burst_start + BURST_SIZE * d_OSR); //consume samples up to next guard period
192 d_state = synchronized;
piotrd0bf1492014-02-05 17:27:32 +0100193 }
194 else
195 {
piotr437f5462014-02-04 17:57:25 +0100196 d_state = next_fcch_search; //if there is error in the sch burst go back to fcch search phase
piotr437f5462014-02-04 17:57:25 +0100197 }
piotrd0bf1492014-02-05 17:27:32 +0100198 }
199 else
200 {
201 d_state = sch_search;
202 }
203 break;
204 }
205 //in this state receiver is synchronized and it processes bursts according to burst type for given burst number
206 case synchronized:
207 {
208 DCOUT("Synchronized") ;
209 vector_complex channel_imp_resp(CHAN_IMP_RESP_LENGTH*d_OSR);
210 int burst_start;
211 int offset = 0;
212 int to_consume = 0;
213 unsigned char output_binary[BURST_SIZE];
piotr437f5462014-02-04 17:57:25 +0100214
piotrd0bf1492014-02-05 17:27:32 +0100215 burst_type b_type = d_channel_conf.get_burst_type(d_burst_nr); //get burst type for given burst number
piotr437f5462014-02-04 17:57:25 +0100216
piotrd0bf1492014-02-05 17:27:32 +0100217 switch (b_type)
218 {
219 case fcch_burst: //if it's FCCH burst
220 {
221 const unsigned first_sample = ceil((GUARD_PERIOD + 2 * TAIL_BITS) * d_OSR) + 1;
222 const unsigned last_sample = first_sample + USEFUL_BITS * d_OSR - TAIL_BITS * d_OSR;
223 double freq_offset = compute_freq_offset(input, first_sample, last_sample); //extract frequency offset from it
piotr437f5462014-02-04 17:57:25 +0100224
piotrd0bf1492014-02-05 17:27:32 +0100225 d_freq_offset_vals.push_front(freq_offset);
piotr7c82b172014-02-08 14:15:27 +0100226 send_burst(d_burst_nr, fc_fb);
piotrd0bf1492014-02-05 17:27:32 +0100227 if (d_freq_offset_vals.size() >= 10)
228 {
229 double sum = std::accumulate(d_freq_offset_vals.begin(), d_freq_offset_vals.end(), 0);
230 double mean_offset = sum / d_freq_offset_vals.size(); //compute mean
231 d_freq_offset_vals.clear();
piotr7c82b172014-02-08 14:15:27 +0100232 DCOUT("mean offset" << mean_offset);
piotrd0bf1492014-02-05 17:27:32 +0100233 if (abs(mean_offset) > FCCH_MAX_FREQ_OFFSET)
234 {
piotr7c82b172014-02-08 14:15:27 +0100235 //d_freq_offset -= mean_offset; //and adjust frequency if it have changed beyond
piotr5f1e1d32014-02-05 18:10:05 +0100236 //set_frequency(d_freq_offset); //some limit
piotr7e3b0db2014-02-05 22:44:30 +0100237 DCOUT("Adjusting frequency, new frequency offset: " << d_freq_offset << "\n");
piotrd0bf1492014-02-05 17:27:32 +0100238 }
239 }
240 }
241 break;
242 case sch_burst: //if it's SCH burst
243 {
244 int t1, t2, t3, d_ncc, d_bcc;
245 burst_start = get_sch_chan_imp_resp(input, &channel_imp_resp[0]); //get channel impulse response
246 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
piotr7c82b172014-02-08 14:15:27 +0100247 send_burst(d_burst_nr, output_binary);
piotrd0bf1492014-02-05 17:27:32 +0100248 if (decode_sch(&output_binary[3], &t1, &t2, &t3, &d_ncc, &d_bcc) == 0) //and decode SCH data
249 {
250 // d_burst_nr.set(t1, t2, t3, 0); //but only to check if burst_start value is correct
251 d_failed_sch = 0;
252 DCOUT("bcc: " << d_bcc << " ncc: " << d_ncc << " t1: " << t1 << " t2: " << t2 << " t3: " << t3);
253 offset = burst_start - floor((GUARD_PERIOD) * d_OSR); //compute offset from burst_start - burst should start after a guard period
piotr7c82b172014-02-08 14:15:27 +0100254 DCOUT("offset: "<<offset);
piotrd0bf1492014-02-05 17:27:32 +0100255 to_consume += offset; //adjust with offset number of samples to be consumed
256 }
257 else
258 {
259 d_failed_sch++;
260 if (d_failed_sch >= MAX_SCH_ERRORS)
261 {
262 d_state = first_fcch_search; //TODO: this isn't good, the receiver is going wild when it goes back to next_fcch_search from here
piotr437f5462014-02-04 17:57:25 +0100263 d_freq_offset_vals.clear();
piotrd0bf1492014-02-05 17:27:32 +0100264 d_freq_offset=0;
piotr7c82b172014-02-08 14:15:27 +0100265 //set_frequency(0);
266 DCOUT("Re-Synchronization");
piotr437f5462014-02-04 17:57:25 +0100267 }
piotr437f5462014-02-04 17:57:25 +0100268 }
piotrd0bf1492014-02-05 17:27:32 +0100269 }
270 break;
piotr437f5462014-02-04 17:57:25 +0100271
piotr7e3b0db2014-02-05 22:44:30 +0100272 case normal_burst:
273 {
274 float normal_corr_max; //if it's normal burst
275 burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc); //get channel impulse response for given training sequence number - d_bcc
piotrd0bf1492014-02-05 17:27:32 +0100276 detect_burst(input, &channel_imp_resp[0], burst_start, output_binary); //MLSE detection of bits
piotr7c82b172014-02-08 14:15:27 +0100277 send_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
piotrd0bf1492014-02-05 17:27:32 +0100278 break;
piotr7e3b0db2014-02-05 22:44:30 +0100279 }
piotrd0bf1492014-02-05 17:27:32 +0100280 case dummy_or_normal:
281 {
piotr7e3b0db2014-02-05 22:44:30 +0100282 unsigned int normal_burst_start;
283 float dummy_corr_max, normal_corr_max;
piotr7c82b172014-02-08 14:15:27 +0100284 DCOUT("Dummy");
piotr7e3b0db2014-02-05 22:44:30 +0100285 get_norm_chan_imp_resp(input, &channel_imp_resp[0], &dummy_corr_max, TS_DUMMY);
piotr7c82b172014-02-08 14:15:27 +0100286 DCOUT("Normal");
piotr7e3b0db2014-02-05 22:44:30 +0100287 normal_burst_start = get_norm_chan_imp_resp(input, &channel_imp_resp[0], &normal_corr_max, d_bcc);
288
piotr7c82b172014-02-08 14:15:27 +0100289 DCOUT("normal_corr_max: " << normal_corr_max << " dummy_corr_max:" << dummy_corr_max);
piotr7e3b0db2014-02-05 22:44:30 +0100290 if (normal_corr_max > dummy_corr_max)
piotrd0bf1492014-02-05 17:27:32 +0100291 {
piotr7e3b0db2014-02-05 22:44:30 +0100292 detect_burst(input, &channel_imp_resp[0], normal_burst_start, output_binary);
piotr7c82b172014-02-08 14:15:27 +0100293 send_burst(d_burst_nr, output_binary); //TODO: this shouldn't be here - remove it when gsm receiver's interface will be ready
piotrd0bf1492014-02-05 17:27:32 +0100294 }
295 else
296 {
piotr7c82b172014-02-08 14:15:27 +0100297 send_burst(d_burst_nr, dummy_burst);
piotrd0bf1492014-02-05 17:27:32 +0100298 }
299 }
300 case rach_burst:
piotrd0bf1492014-02-05 17:27:32 +0100301 break;
piotr7e3b0db2014-02-05 22:44:30 +0100302 case dummy:
piotr7c82b172014-02-08 14:15:27 +0100303 send_burst(d_burst_nr, dummy_burst);
piotrd0bf1492014-02-05 17:27:32 +0100304 break;
305 case empty: //if it's empty burst
306 break; //do nothing
307 }
308
309 d_burst_nr++; //go to next burst
310
311 to_consume += TS_BITS * d_OSR + d_burst_nr.get_offset(); //consume samples of the burst up to next guard period
312 //and add offset which is introduced by
313 //0.25 fractional part of a guard period
piotrd0bf1492014-02-05 17:27:32 +0100314 consume_each(to_consume);
315 }
316 break;
piotr437f5462014-02-04 17:57:25 +0100317 }
318
piotrd0bf1492014-02-05 17:27:32 +0100319 return produced_out;
320}
piotr437f5462014-02-04 17:57:25 +0100321
piotrd0bf1492014-02-05 17:27:32 +0100322
323bool receiver_impl::find_fcch_burst(const gr_complex *input, const int nitems)
324{
325 circular_buffer_float phase_diff_buffer(FCCH_HITS_NEEDED * d_OSR); //circular buffer used to scan throug signal to find
326 //best match for FCCH burst
327 float phase_diff = 0;
328 gr_complex conjprod;
329 int start_pos = -1;
330 int hit_count = 0;
331 int miss_count = 0;
332 float min_phase_diff;
333 float max_phase_diff;
334 double best_sum = 0;
335 float lowest_max_min_diff = 99999;
336
337 int to_consume = 0;
338 int sample_number = 0;
339 bool end = false;
340 bool result = false;
341 circular_buffer_float::iterator buffer_iter;
342
343 /**@name Possible states of FCCH search algorithm*/
344 //@{
345 enum states
piotr437f5462014-02-04 17:57:25 +0100346 {
piotr437f5462014-02-04 17:57:25 +0100347 init, ///< initialize variables
348 search, ///< search for positive samples
349 found_something, ///< search for FCCH and the best position of it
350 fcch_found, ///< when FCCH was found
351 search_fail ///< when there is no FCCH in the input vector
piotrd0bf1492014-02-05 17:27:32 +0100352 } fcch_search_state;
353 //@}
piotr437f5462014-02-04 17:57:25 +0100354
piotrd0bf1492014-02-05 17:27:32 +0100355 fcch_search_state = init;
piotr437f5462014-02-04 17:57:25 +0100356
piotrd0bf1492014-02-05 17:27:32 +0100357 while (!end)
358 {
359 switch (fcch_search_state)
360 {
piotr437f5462014-02-04 17:57:25 +0100361
piotrd0bf1492014-02-05 17:27:32 +0100362 case init: //initialize variables
piotr437f5462014-02-04 17:57:25 +0100363 hit_count = 0;
364 miss_count = 0;
365 start_pos = -1;
366 lowest_max_min_diff = 99999;
367 phase_diff_buffer.clear();
368 fcch_search_state = search;
369
370 break;
371
piotr7c82b172014-02-08 14:15:27 +0100372 case search: // search for positive samples
piotr437f5462014-02-04 17:57:25 +0100373 sample_number++;
374
piotrd0bf1492014-02-05 17:27:32 +0100375 if (sample_number > nitems - FCCH_HITS_NEEDED * d_OSR) //if it isn't possible to find FCCH because
376 {
piotr7c82b172014-02-08 14:15:27 +0100377 //there's too few samples left to look into,
piotrd0bf1492014-02-05 17:27:32 +0100378 to_consume = sample_number; //don't do anything with those samples which are left
piotr7c82b172014-02-08 14:15:27 +0100379 //and consume only those which were checked
piotrd0bf1492014-02-05 17:27:32 +0100380 fcch_search_state = search_fail;
381 }
382 else
383 {
384 phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
piotr437f5462014-02-04 17:57:25 +0100385
piotrd0bf1492014-02-05 17:27:32 +0100386 if (phase_diff > 0) //if a positive phase difference was found
387 {
388 to_consume = sample_number;
389 fcch_search_state = found_something; //switch to state in which searches for FCCH
390 }
391 else
392 {
393 fcch_search_state = search;
394 }
piotr437f5462014-02-04 17:57:25 +0100395 }
396
397 break;
398
piotrd0bf1492014-02-05 17:27:32 +0100399 case found_something: // search for FCCH and the best position of it
400 {
401 if (phase_diff > 0)
402 {
piotr437f5462014-02-04 17:57:25 +0100403 hit_count++; //positive phase differencies increases hits_count
piotrd0bf1492014-02-05 17:27:32 +0100404 }
405 else
406 {
piotr437f5462014-02-04 17:57:25 +0100407 miss_count++; //negative increases miss_count
piotrd0bf1492014-02-05 17:27:32 +0100408 }
piotr437f5462014-02-04 17:57:25 +0100409
piotrd0bf1492014-02-05 17:27:32 +0100410 if ((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count <= FCCH_HITS_NEEDED * d_OSR))
411 {
piotr437f5462014-02-04 17:57:25 +0100412 //if miss_count exceeds limit before hit_count
413 fcch_search_state = init; //go to init
414 continue;
piotrd0bf1492014-02-05 17:27:32 +0100415 }
416 else if (((miss_count >= FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR)) || (hit_count > 2 * FCCH_HITS_NEEDED * d_OSR))
417 {
piotr437f5462014-02-04 17:57:25 +0100418 //if hit_count and miss_count exceeds limit then FCCH was found
419 fcch_search_state = fcch_found;
420 continue;
piotrd0bf1492014-02-05 17:27:32 +0100421 }
422 else if ((miss_count < FCCH_MAX_MISSES * d_OSR) && (hit_count > FCCH_HITS_NEEDED * d_OSR))
423 {
piotr437f5462014-02-04 17:57:25 +0100424 //find difference between minimal and maximal element in the buffer
425 //for FCCH this value should be low
426 //this part is searching for a region where this value is lowest
427 min_phase_diff = * (min_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
428 max_phase_diff = * (max_element(phase_diff_buffer.begin(), phase_diff_buffer.end()));
429
piotrd0bf1492014-02-05 17:27:32 +0100430 if (lowest_max_min_diff > max_phase_diff - min_phase_diff)
431 {
432 lowest_max_min_diff = max_phase_diff - min_phase_diff;
433 start_pos = sample_number - FCCH_HITS_NEEDED * d_OSR - FCCH_MAX_MISSES * d_OSR; //store start pos
434 best_sum = 0;
piotr437f5462014-02-04 17:57:25 +0100435
piotrd0bf1492014-02-05 17:27:32 +0100436 for (buffer_iter = phase_diff_buffer.begin();
437 buffer_iter != (phase_diff_buffer.end());
438 buffer_iter++)
439 {
440 best_sum += *buffer_iter - (M_PI / 2) / d_OSR; //store best value of phase offset sum
441 }
piotr437f5462014-02-04 17:57:25 +0100442 }
piotrd0bf1492014-02-05 17:27:32 +0100443 }
piotr437f5462014-02-04 17:57:25 +0100444
piotrd0bf1492014-02-05 17:27:32 +0100445 sample_number++;
piotr437f5462014-02-04 17:57:25 +0100446
piotrd0bf1492014-02-05 17:27:32 +0100447 if (sample_number >= nitems) //if there's no single sample left to check
448 {
piotr437f5462014-02-04 17:57:25 +0100449 fcch_search_state = search_fail;//FCCH search failed
450 continue;
piotr437f5462014-02-04 17:57:25 +0100451 }
piotrd0bf1492014-02-05 17:27:32 +0100452
453 phase_diff = compute_phase_diff(input[sample_number], input[sample_number-1]);
454 phase_diff_buffer.push_back(phase_diff);
455 fcch_search_state = found_something;
456 }
457 break;
458
459 case fcch_found:
460 {
461 DCOUT("fcch found on position: " << d_counter + start_pos);
462 to_consume = start_pos + FCCH_HITS_NEEDED * d_OSR + 1; //consume one FCCH burst
463
464 d_fcch_start_pos = d_counter + start_pos;
465
466 //compute frequency offset
467 double phase_offset = best_sum / FCCH_HITS_NEEDED;
468 double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
469 d_freq_offset -= freq_offset;
470 DCOUT("freq_offset: " << d_freq_offset);
471
472 end = true;
473 result = true;
piotr437f5462014-02-04 17:57:25 +0100474 break;
piotrd0bf1492014-02-05 17:27:32 +0100475 }
piotr437f5462014-02-04 17:57:25 +0100476
piotrd0bf1492014-02-05 17:27:32 +0100477 case search_fail:
piotr437f5462014-02-04 17:57:25 +0100478 end = true;
479 result = false;
480 break;
481 }
piotr437f5462014-02-04 17:57:25 +0100482 }
483
piotrd0bf1492014-02-05 17:27:32 +0100484 d_counter += to_consume;
485 consume_each(to_consume);
piotr437f5462014-02-04 17:57:25 +0100486
piotrd0bf1492014-02-05 17:27:32 +0100487 return result;
488}
489
490
491double receiver_impl::compute_freq_offset(const gr_complex * input, unsigned first_sample, unsigned last_sample)
492{
493 double phase_sum = 0;
494 unsigned ii;
495
496 for (ii = first_sample; ii < last_sample; ii++)
piotr437f5462014-02-04 17:57:25 +0100497 {
piotr437f5462014-02-04 17:57:25 +0100498 double phase_diff = compute_phase_diff(input[ii], input[ii-1]) - (M_PI / 2) / d_OSR;
499 phase_sum += phase_diff;
piotr437f5462014-02-04 17:57:25 +0100500 }
501
piotrd0bf1492014-02-05 17:27:32 +0100502 double phase_offset = phase_sum / (last_sample - first_sample);
503 double freq_offset = phase_offset * 1625000.0 / (12.0 * M_PI);
504 return freq_offset;
505}
piotr437f5462014-02-04 17:57:25 +0100506
piotrd0bf1492014-02-05 17:27:32 +0100507void receiver_impl::set_frequency(double freq_offset)
508{
509 d_tuner->calleval(freq_offset);
510}
piotr437f5462014-02-04 17:57:25 +0100511
piotrd0bf1492014-02-05 17:27:32 +0100512inline float receiver_impl::compute_phase_diff(gr_complex val1, gr_complex val2)
513{
514 gr_complex conjprod = val1 * conj(val2);
515 return fast_atan2f(imag(conjprod), real(conjprod));
516}
piotr437f5462014-02-04 17:57:25 +0100517
piotrd0bf1492014-02-05 17:27:32 +0100518bool receiver_impl::reach_sch_burst(const int nitems)
519{
520 //it just consumes samples to get near to a SCH burst
521 int to_consume = 0;
522 bool result = false;
523 unsigned sample_nr_near_sch_start = d_fcch_start_pos + (FRAME_BITS - SAFETY_MARGIN) * d_OSR;
524
525 //consume samples until d_counter will be equal to sample_nr_near_sch_start
526 if (d_counter < sample_nr_near_sch_start)
527 {
528 if (d_counter + nitems >= sample_nr_near_sch_start)
529 {
530 to_consume = sample_nr_near_sch_start - d_counter;
531 }
532 else
533 {
534 to_consume = nitems;
piotr437f5462014-02-04 17:57:25 +0100535 }
536 result = false;
piotrd0bf1492014-02-05 17:27:32 +0100537 }
538 else
539 {
piotr437f5462014-02-04 17:57:25 +0100540 to_consume = 0;
541 result = true;
piotr437f5462014-02-04 17:57:25 +0100542 }
543
piotrd0bf1492014-02-05 17:27:32 +0100544 d_counter += to_consume;
545 consume_each(to_consume);
546 return result;
547}
548
549int receiver_impl::get_sch_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp)
550{
551 vector_complex correlation_buffer;
552 vector_float power_buffer;
553 vector_float window_energy_buffer;
554
555 int strongest_window_nr;
556 int burst_start = 0;
557 int chan_imp_resp_center = 0;
558 float max_correlation = 0;
559 float energy = 0;
560
561 for (int ii = SYNC_POS * d_OSR; ii < (SYNC_POS + SYNC_SEARCH_RANGE) *d_OSR; ii++)
piotr437f5462014-02-04 17:57:25 +0100562 {
piotr437f5462014-02-04 17:57:25 +0100563 gr_complex correlation = correlate_sequence(&d_sch_training_seq[5], N_SYNC_BITS - 10, &input[ii]);
564 correlation_buffer.push_back(correlation);
565 power_buffer.push_back(std::pow(abs(correlation), 2));
piotrd0bf1492014-02-05 17:27:32 +0100566 }
piotr437f5462014-02-04 17:57:25 +0100567
piotrd0bf1492014-02-05 17:27:32 +0100568 //compute window energies
569 vector_float::iterator iter = power_buffer.begin();
570 bool loop_end = false;
571 while (iter != power_buffer.end())
572 {
piotr437f5462014-02-04 17:57:25 +0100573 vector_float::iterator iter_ii = iter;
574 energy = 0;
575
piotrd0bf1492014-02-05 17:27:32 +0100576 for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++, iter_ii++)
577 {
578 if (iter_ii == power_buffer.end())
579 {
580 loop_end = true;
581 break;
582 }
583 energy += (*iter_ii);
piotr437f5462014-02-04 17:57:25 +0100584 }
piotrd0bf1492014-02-05 17:27:32 +0100585 if (loop_end)
586 {
587 break;
piotr437f5462014-02-04 17:57:25 +0100588 }
589 iter++;
590 window_energy_buffer.push_back(energy);
piotrd0bf1492014-02-05 17:27:32 +0100591 }
piotr437f5462014-02-04 17:57:25 +0100592
piotrd0bf1492014-02-05 17:27:32 +0100593 strongest_window_nr = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
piotr437f5462014-02-04 17:57:25 +0100594 // d_channel_imp_resp.clear();
595
piotrd0bf1492014-02-05 17:27:32 +0100596 max_correlation = 0;
597 for (int ii = 0; ii < (d_chan_imp_length) *d_OSR; ii++)
598 {
piotr437f5462014-02-04 17:57:25 +0100599 gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
piotrd0bf1492014-02-05 17:27:32 +0100600 if (abs(correlation) > max_correlation)
601 {
602 chan_imp_resp_center = ii;
603 max_correlation = abs(correlation);
piotr437f5462014-02-04 17:57:25 +0100604 }
piotrd0bf1492014-02-05 17:27:32 +0100605 // d_channel_imp_resp.push_back(correlation);
piotr437f5462014-02-04 17:57:25 +0100606 chan_imp_resp[ii] = correlation;
piotr437f5462014-02-04 17:57:25 +0100607 }
608
piotrd0bf1492014-02-05 17:27:32 +0100609 burst_start = strongest_window_nr + chan_imp_resp_center - 48 * d_OSR - 2 * d_OSR + 2 + SYNC_POS * d_OSR;
610 return burst_start;
611}
piotr437f5462014-02-04 17:57:25 +0100612
613
piotrd0bf1492014-02-05 17:27:32 +0100614
615void receiver_impl::detect_burst(const gr_complex * input, gr_complex * chan_imp_resp, int burst_start, unsigned char * output_binary)
616{
617 float output[BURST_SIZE];
618 gr_complex rhh_temp[CHAN_IMP_RESP_LENGTH*d_OSR];
619 gr_complex rhh[CHAN_IMP_RESP_LENGTH];
620 gr_complex filtered_burst[BURST_SIZE];
621 int start_state = 3;
622 unsigned int stop_states[2] = {4, 12};
623
624 autocorrelation(chan_imp_resp, rhh_temp, d_chan_imp_length*d_OSR);
625 for (int ii = 0; ii < (d_chan_imp_length); ii++)
piotr437f5462014-02-04 17:57:25 +0100626 {
piotr437f5462014-02-04 17:57:25 +0100627 rhh[ii] = conj(rhh_temp[ii*d_OSR]);
piotr437f5462014-02-04 17:57:25 +0100628 }
629
piotrd0bf1492014-02-05 17:27:32 +0100630 mafi(&input[burst_start], BURST_SIZE, chan_imp_resp, d_chan_imp_length*d_OSR, filtered_burst);
631
632 viterbi_detector(filtered_burst, BURST_SIZE, rhh, start_state, stop_states, 2, output);
633
634 for (int i = 0; i < BURST_SIZE ; i++)
piotr437f5462014-02-04 17:57:25 +0100635 {
piotrd0bf1492014-02-05 17:27:32 +0100636 output_binary[i] = (output[i] > 0);
637 }
638}
piotr437f5462014-02-04 17:57:25 +0100639
piotrd0bf1492014-02-05 17:27:32 +0100640//TODO consider placing this funtion in a separate class for signal processing
641void receiver_impl::gmsk_mapper(const unsigned char * input, int nitems, gr_complex * gmsk_output, gr_complex start_point)
642{
643 gr_complex j = gr_complex(0.0, 1.0);
piotr437f5462014-02-04 17:57:25 +0100644
piotrd0bf1492014-02-05 17:27:32 +0100645 int current_symbol;
646 int encoded_symbol;
647 int previous_symbol = 2 * input[0] - 1;
648 gmsk_output[0] = start_point;
649
650 for (int i = 1; i < nitems; i++)
651 {
piotr437f5462014-02-04 17:57:25 +0100652 //change bits representation to NRZ
653 current_symbol = 2 * input[i] - 1;
654 //differentially encode
655 encoded_symbol = current_symbol * previous_symbol;
656 //and do gmsk mapping
657 gmsk_output[i] = j * gr_complex(encoded_symbol, 0.0) * gmsk_output[i-1];
658 previous_symbol = current_symbol;
piotr437f5462014-02-04 17:57:25 +0100659 }
piotrd0bf1492014-02-05 17:27:32 +0100660}
piotr437f5462014-02-04 17:57:25 +0100661
piotrd0bf1492014-02-05 17:27:32 +0100662//TODO consider use of some generalized function for correlation and placing it in a separate class for signal processing
663gr_complex receiver_impl::correlate_sequence(const gr_complex * sequence, int length, const gr_complex * input)
664{
665 gr_complex result(0.0, 0.0);
666 int sample_number = 0;
667
668 for (int ii = 0; ii < length; ii++)
piotr437f5462014-02-04 17:57:25 +0100669 {
piotr437f5462014-02-04 17:57:25 +0100670 sample_number = (ii * d_OSR) ;
671 result += sequence[ii] * conj(input[sample_number]);
piotr437f5462014-02-04 17:57:25 +0100672 }
673
piotrd0bf1492014-02-05 17:27:32 +0100674 result = result / gr_complex(length, 0);
675 return result;
676}
677
678//computes autocorrelation for positive arguments
679//TODO consider placing this funtion in a separate class for signal processing
680inline void receiver_impl::autocorrelation(const gr_complex * input, gr_complex * out, int nitems)
681{
682 int i, k;
683 for (k = nitems - 1; k >= 0; k--)
piotr437f5462014-02-04 17:57:25 +0100684 {
piotr437f5462014-02-04 17:57:25 +0100685 out[k] = gr_complex(0, 0);
piotrd0bf1492014-02-05 17:27:32 +0100686 for (i = k; i < nitems; i++)
687 {
688 out[k] += input[i] * conj(input[i-k]);
piotr437f5462014-02-04 17:57:25 +0100689 }
piotr437f5462014-02-04 17:57:25 +0100690 }
piotrd0bf1492014-02-05 17:27:32 +0100691}
piotr437f5462014-02-04 17:57:25 +0100692
piotrd0bf1492014-02-05 17:27:32 +0100693//TODO consider use of some generalized function for filtering and placing it in a separate class for signal processing
694inline void receiver_impl::mafi(const gr_complex * input, int nitems, gr_complex * filter, int filter_length, gr_complex * output)
695{
696 int ii = 0, n, a;
697
698 for (n = 0; n < nitems; n++)
piotr437f5462014-02-04 17:57:25 +0100699 {
piotr437f5462014-02-04 17:57:25 +0100700 a = n * d_OSR;
701 output[n] = 0;
702 ii = 0;
703
piotrd0bf1492014-02-05 17:27:32 +0100704 while (ii < filter_length)
705 {
706 if ((a + ii) >= nitems*d_OSR)
707 break;
708 output[n] += input[a+ii] * filter[ii];
709 ii++;
piotr437f5462014-02-04 17:57:25 +0100710 }
piotr437f5462014-02-04 17:57:25 +0100711 }
piotrd0bf1492014-02-05 17:27:32 +0100712}
piotr437f5462014-02-04 17:57:25 +0100713
piotrd0bf1492014-02-05 17:27:32 +0100714//TODO: get_norm_chan_imp_resp is similar to get_sch_chan_imp_resp - consider joining this two functions
715//TODO: this is place where most errors are introduced and can be corrected by improvements to this fuction
716//especially computations of strongest_window_nr
piotr7e3b0db2014-02-05 22:44:30 +0100717int receiver_impl::get_norm_chan_imp_resp(const gr_complex *input, gr_complex * chan_imp_resp, float *corr_max, int bcc)
piotrd0bf1492014-02-05 17:27:32 +0100718{
719 vector_complex correlation_buffer;
720 vector_float power_buffer;
721 vector_float window_energy_buffer;
piotr437f5462014-02-04 17:57:25 +0100722
piotrd0bf1492014-02-05 17:27:32 +0100723 int strongest_window_nr;
724 int burst_start = 0;
725 int chan_imp_resp_center = 0;
726 float max_correlation = 0;
727 float energy = 0;
piotr437f5462014-02-04 17:57:25 +0100728
piotrd0bf1492014-02-05 17:27:32 +0100729 int search_center = (int)((TRAIN_POS + GUARD_PERIOD) * d_OSR);
piotr7c82b172014-02-08 14:15:27 +0100730 int search_start_pos = search_center + 1 - 5*d_OSR;
piotr437f5462014-02-04 17:57:25 +0100731 // int search_start_pos = search_center - d_chan_imp_length * d_OSR;
piotrd0bf1492014-02-05 17:27:32 +0100732 int search_stop_pos = search_center + d_chan_imp_length * d_OSR + 2 * d_OSR;
piotr437f5462014-02-04 17:57:25 +0100733
piotrd0bf1492014-02-05 17:27:32 +0100734 for (int ii = search_start_pos; ii < search_stop_pos; ii++)
735 {
piotr437f5462014-02-04 17:57:25 +0100736 gr_complex correlation = correlate_sequence(&d_norm_training_seq[bcc][TRAIN_BEGINNING], N_TRAIN_BITS - 10, &input[ii]);
737
738 correlation_buffer.push_back(correlation);
739 power_buffer.push_back(std::pow(abs(correlation), 2));
piotrd0bf1492014-02-05 17:27:32 +0100740 }
piotr437f5462014-02-04 17:57:25 +0100741
piotrd0bf1492014-02-05 17:27:32 +0100742 //compute window energies
743 vector_float::iterator iter = power_buffer.begin();
744 bool loop_end = false;
745 while (iter != power_buffer.end())
746 {
piotr437f5462014-02-04 17:57:25 +0100747 vector_float::iterator iter_ii = iter;
748 energy = 0;
749
piotrd0bf1492014-02-05 17:27:32 +0100750 for (int ii = 0; ii < (d_chan_imp_length - 2)*d_OSR; ii++, iter_ii++)
751 {
piotrd0bf1492014-02-05 17:27:32 +0100752 if (iter_ii == power_buffer.end())
753 {
754 loop_end = true;
755 break;
756 }
757 energy += (*iter_ii);
piotr437f5462014-02-04 17:57:25 +0100758 }
piotrd0bf1492014-02-05 17:27:32 +0100759 if (loop_end)
760 {
761 break;
piotr437f5462014-02-04 17:57:25 +0100762 }
763 iter++;
764
765 window_energy_buffer.push_back(energy);
piotrd0bf1492014-02-05 17:27:32 +0100766 }
767 //!why doesn't this work
768 int strongest_window_nr_new = max_element(window_energy_buffer.begin(), window_energy_buffer.end()) - window_energy_buffer.begin();
piotr7c82b172014-02-08 14:15:27 +0100769 strongest_window_nr = strongest_window_nr_new-d_OSR; //! so I have to override it here
piotr437f5462014-02-04 17:57:25 +0100770
piotrd0bf1492014-02-05 17:27:32 +0100771 max_correlation = 0;
772 for (int ii = 0; ii < (d_chan_imp_length)*d_OSR; ii++)
773 {
piotr437f5462014-02-04 17:57:25 +0100774 gr_complex correlation = correlation_buffer[strongest_window_nr + ii];
piotrd0bf1492014-02-05 17:27:32 +0100775 if (abs(correlation) > max_correlation)
776 {
777 chan_imp_resp_center = ii;
778 max_correlation = abs(correlation);
piotr437f5462014-02-04 17:57:25 +0100779 }
piotrd0bf1492014-02-05 17:27:32 +0100780 // d_channel_imp_resp.push_back(correlation);
piotr437f5462014-02-04 17:57:25 +0100781 chan_imp_resp[ii] = correlation;
piotr437f5462014-02-04 17:57:25 +0100782 }
piotr7c82b172014-02-08 14:15:27 +0100783
piotr7e3b0db2014-02-05 22:44:30 +0100784 *corr_max = max_correlation;
785 // We want to use the first sample of the impulse response, and the
piotrd0bf1492014-02-05 17:27:32 +0100786 // corresponding samples of the received signal.
787 // the variable sync_w should contain the beginning of the used part of
788 // training sequence, which is 3+57+1+6=67 bits into the burst. That is
789 // we have that sync_t16 equals first sample in bit number 67.
790
791 burst_start = search_start_pos + chan_imp_resp_center + strongest_window_nr - TRAIN_POS * d_OSR;
792
793 // GMSK modulator introduces ISI - each bit is expanded for 3*Tb
794 // and it's maximum value is in the last bit period, so burst starts
795 // 2*Tb earlier
796 burst_start -= 2 * d_OSR;
797 burst_start += 2;
798 //COUT("Poczatek ###############################");
799 //std::cout << " burst_start: " << burst_start << " center: " << ((float)(search_start_pos + strongest_window_nr + chan_imp_resp_center)) / d_OSR << " stronegest window nr: " << strongest_window_nr << "\n";
800 //COUT("burst_start_new: " << (search_start_pos + strongest_window_nr_new - TRAIN_POS * d_OSR));
piotr7c82b172014-02-08 14:15:27 +0100801 DCOUT("strongest_window_nr_new: " << strongest_window_nr);
802 burst_start=(search_start_pos + strongest_window_nr - TRAIN_POS * d_OSR);
803
804 DCOUT("burst_start: " << burst_start);
piotrd0bf1492014-02-05 17:27:32 +0100805 return burst_start;
806}
piotr437f5462014-02-04 17:57:25 +0100807
808
piotr7c82b172014-02-08 14:15:27 +0100809void receiver_impl::send_burst(burst_counter burst_nr, const unsigned char * burst_binary)
piotrd0bf1492014-02-05 17:27:32 +0100810{
811 int ii;
piotr7c82b172014-02-08 14:15:27 +0100812
813 static const int nelements = 148;
814 pmt::pmt_t burst = pmt::make_s8vector(nelements, 0); // Initializes all 64 elements to 0
815
816 size_t vec_size;
817 int8_t *burst_elements = pmt::s8vector_writable_elements(burst, vec_size); // Returns pointer, vec_size is set to 64
818
819 memcpy(burst_elements, burst_binary, nelements);
820 message_port_pub(pmt::mp("bursts"), burst);
piotrd0bf1492014-02-05 17:27:32 +0100821}
822//TODO: this shouldn't be here also - the same reason
823void receiver_impl::configure_receiver()
824{
825 d_channel_conf.set_multiframe_type(TSC0, multiframe_51);
826 d_channel_conf.set_burst_types(TIMESLOT0, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
piotr437f5462014-02-04 17:57:25 +0100827
piotrd0bf1492014-02-05 17:27:32 +0100828 d_channel_conf.set_burst_types(TSC0, TEST_CCH_FRAMES, sizeof(TEST_CCH_FRAMES) / sizeof(unsigned), dummy_or_normal);
829 d_channel_conf.set_burst_types(TSC0, FCCH_FRAMES, sizeof(FCCH_FRAMES) / sizeof(unsigned), fcch_burst);
piotr437f5462014-02-04 17:57:25 +0100830
831 // d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_26);
832 // d_channel_conf.set_burst_types(TIMESLOT1, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
833 // d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_26);
834 // d_channel_conf.set_burst_types(TIMESLOT2, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
835 // d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_26);
836 // d_channel_conf.set_burst_types(TIMESLOT3, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
837 // d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_26);
838 // d_channel_conf.set_burst_types(TIMESLOT4, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
839 // d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_26);
840 // d_channel_conf.set_burst_types(TIMESLOT5, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
841 // d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_26);
842 // d_channel_conf.set_burst_types(TIMESLOT6, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
843 // d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_26);
844 // d_channel_conf.set_burst_types(TIMESLOT7, TRAFFIC_CHANNEL_F, sizeof(TRAFFIC_CHANNEL_F) / sizeof(unsigned), dummy_or_normal);
piotr7e3b0db2014-02-05 22:44:30 +0100845
piotrd0bf1492014-02-05 17:27:32 +0100846 d_channel_conf.set_multiframe_type(TIMESLOT1, multiframe_51);
847 d_channel_conf.set_burst_types(TIMESLOT1, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
848 d_channel_conf.set_multiframe_type(TIMESLOT2, multiframe_51);
849 d_channel_conf.set_burst_types(TIMESLOT2, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
850 d_channel_conf.set_multiframe_type(TIMESLOT3, multiframe_51);
851 d_channel_conf.set_burst_types(TIMESLOT3, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
852 d_channel_conf.set_multiframe_type(TIMESLOT4, multiframe_51);
853 d_channel_conf.set_burst_types(TIMESLOT4, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
854 d_channel_conf.set_multiframe_type(TIMESLOT5, multiframe_51);
855 d_channel_conf.set_burst_types(TIMESLOT5, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
856 d_channel_conf.set_multiframe_type(TIMESLOT6, multiframe_51);
857 d_channel_conf.set_burst_types(TIMESLOT6, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
858 d_channel_conf.set_multiframe_type(TIMESLOT7, multiframe_51);
859 d_channel_conf.set_burst_types(TIMESLOT7, TEST51, sizeof(TEST51) / sizeof(unsigned), dummy_or_normal);
860
861}
piotr437f5462014-02-04 17:57:25 +0100862
863
piotrd0bf1492014-02-05 17:27:32 +0100864} /* namespace gsm */
piotr437f5462014-02-04 17:57:25 +0100865} /* namespace gr */
866