blob: b8acb53d98dbae5ae4e4bdd6c0c69cf1acd093d7 [file] [log] [blame]
Christina Quast1c3a7992015-03-13 12:57:59 +01001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
2<html xmlns:p="urn:schemas-microsoft-com:office:powerpoint" xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office"><head>
3
4 <title>CMSIS: Cortex Microcontroller Software Interface Standard</title><meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
5 <meta name="ProgId" content="FrontPage.Editor.Document">
6 <style>
7<!--
8/*-----------------------------------------------------------Keil Software CHM Style Sheet
9-----------------------------------------------------------*/
10body { color: #000000; background-color: #FFFFFF; font-size: 75%; font-family: Verdana, Arial, 'Sans Serif' }
11a:link { color: #0000FF; text-decoration: underline }
12a:visited { color: #0000FF; text-decoration: underline }
13a:active { color: #FF0000; text-decoration: underline }
14a:hover { color: #FF0000; text-decoration: underline }
15h1 { font-family: Verdana; font-size: 18pt; color: #000080; font-weight: bold; text-align: Center; margin-right: 3 }
16h2 { font-family: Verdana; font-size: 14pt; color: #000080; font-weight: bold; background-color: #CCCCCC; margin-top: 24; margin-bottom: 3; padding: 6 }
17h3 { font-family: Verdana; font-size: 10pt; font-weight: bold; background-color: #CCCCCC; margin-top: 24; margin-bottom: 3; padding: 6 }
18pre { font-family: Courier New; font-size: 10pt; background-color: #CCFFCC; margin-left: 24; margin-right: 24 }
19ul { list-style-type: square; margin-top: 6pt; margin-bottom: 0 }
20ol { margin-top: 6pt; margin-bottom: 0 }
21li { clear: both; margin-bottom: 6pt }
22table { font-size: 100%; border-width: 0; padding: 0 }
23th { color: #FFFFFF; background-color: #000080; text-align: left; vertical-align: bottom; padding-right: 6pt }
24tr { text-align: left; vertical-align: top }
25td { text-align: left; vertical-align: top; padding-right: 6pt }
26.ToolT { font-size: 8pt; color: #808080 }
27.TinyT { font-size: 8pt; text-align: Center }
28code { color: #000000; background-color: #E0E0E0; font-family: 'Courier New', Courier; line-height: 120%; font-style: normal }
29/*-----------------------------------------------------------Notes
30-----------------------------------------------------------*/
31p.note { font-weight: bold; clear: both; margin-bottom: 3pt; padding-top: 6pt }
32/*-----------------------------------------------------------Expanding/Contracting Divisions
33-----------------------------------------------------------*/
34#expand { text-decoration: none; margin-bottom: 3pt }
35img.expand { border-style: none; border-width: medium }
36div.expand { display: none; margin-left: 9pt; margin-top: 0 }
37/*-----------------------------------------------------------Where List Tags
38-----------------------------------------------------------*/
39p.wh { font-weight: bold; clear: both; margin-top: 6pt; margin-bottom: 3pt }
40table.wh { width: 100% }
41td.whItem { white-space: nowrap; font-style: italic; padding-right: 6pt; padding-bottom: 6pt }
42td.whDesc { padding-bottom: 6pt }
43/*-----------------------------------------------------------Keil Table Tags
44-----------------------------------------------------------*/
45table.kt { width: 100%; border: 1pt solid #000000 }
46th.kt { white-space: nowrap; border-bottom: 1pt solid #000000; padding-left: 6pt; padding-right: 6pt; padding-top: 4pt; padding-bottom: 4pt }
47tr.kt { }
48td.kt { color: #000000; background-color: #E0E0E0; border-top: 1pt solid #A0A0A0; padding-left: 6pt; padding-right: 6pt; padding-top: 2pt; padding-bottom: 2pt }
49/*----------------------------------------------------------------------------------------------------------------------*/
50 .style1 {
51 background-color: #E0E0E0;
52}
53.O
54 {color:#1D315B;
55 font-size:149%;}
56 -->
57 </style></head>
58<body>
59<h1>Cortex Microcontroller Software Interface Standard</h1>
60
61<p align="center">This file describes the Cortex Microcontroller Software Interface Standard (CMSIS).</p>
62<p align="center">Version: 1.30 - 30. October 2009</p>
63
64<p class="TinyT">Information in this file, the accompany manuals, and software is<br>
65 Copyright © ARM Ltd.<br>All rights reserved.
66</p>
67
68<hr>
69
70<p><span style="FONT-WEIGHT: bold">Revision History</span></p>
71<ul>
72 <li>Version 1.00: initial release. </li>
73 <li>Version 1.01: added __LDREX<em>x</em>, __STREX<em>x</em>, and __CLREX.</li>
74 <li>Version 1.02: added Cortex-M0. </li>
75 <li>Version 1.10: second review. </li>
76 <li>Version 1.20: third review. </li>
77 <li>Version 1.30 PRE-RELEASE: reworked Startup Concept, additional Debug Functionality.</li>
78 <li>Version 1.30 2nd PRE-RELEASE: changed folder structure, added doxyGen comments, added Bit definitions.</li>
79 <li>Version 1.30: updated Device Support Packages.</li>
80</ul>
81
82<hr>
83
84<h2>Contents</h2>
85
86<ol>
87 <li class="LI2"><a href="#1">About</a></li>
88 <li class="LI2"><a href="#2">Coding Rules and Conventions</a></li>
89 <li class="LI2"><a href="#3">CMSIS Files</a></li>
90 <li class="LI2"><a href="#4">Core Peripheral Access Layer</a></li>
91 <li class="LI2"><a href="#5">CMSIS Example</a></li>
92</ol>
93
94<h2><a name="1"></a>About</h2>
95
96<p>
97 The <strong>Cortex Microcontroller Software Interface Standard (CMSIS)</strong> answers the challenges
98 that are faced when software components are deployed to physical microcontroller devices based on a
99 Cortex-M0 or Cortex-M3 processor. The CMSIS will be also expanded to future Cortex-M
100 processor cores (the term Cortex-M is used to indicate that). The CMSIS is defined in close co-operation
101 with various silicon and software vendors and provides a common approach to interface to peripherals,
102 real-time operating systems, and middleware components.
103</p>
104
105<p>ARM provides as part of the CMSIS the following software layers that are
106available for various compiler implementations:</p>
107<ul>
108 <li><strong>Core Peripheral Access Layer</strong>: contains name definitions,
109 address definitions and helper functions to
110 access core registers and peripherals. It defines also a device
111 independent interface for RTOS Kernels that includes debug channel
112 definitions.</li>
113</ul>
114
115<p>These software layers are expanded by Silicon partners with:</p>
116<ul>
117 <li><strong>Device Peripheral Access Layer</strong>: provides definitions
118 for all device peripherals</li>
119 <li><strong>Access Functions for Peripherals (optional)</strong>: provides
120 additional helper functions for peripherals</li>
121</ul>
122
123<p>CMSIS defines for a Cortex-M Microcontroller System:</p>
124<ul>
125 <li style="text-align: left;">A common way to access peripheral registers
126 and a common way to define exception vectors.</li>
127 <li style="text-align: left;">The register names of the <strong>Core
128 Peripherals</strong> and<strong> </strong>the names of the <strong>Core
129 Exception Vectors</strong>.</li>
130 <li>An device independent interface for RTOS Kernels including a debug
131 channel.</li>
132</ul>
133
134<p>
135 By using CMSIS compliant software components, the user can easier re-use template code.
136 CMSIS is intended to enable the combination of software components from multiple middleware vendors.
137</p>
138
139<h2><a name="2"></a>Coding Rules and Conventions</h2>
140
141<p>
142 The following section describes the coding rules and conventions used in the CMSIS
143 implementation. It contains also information about data types and version number information.
144</p>
145
146<h3>Essentials</h3>
147<ul>
148 <li>The CMSIS C code conforms to MISRA 2004 rules. In case of MISRA violations,
149 there are disable and enable sequences for PC-LINT inserted.</li>
150 <li>ANSI standard data types defined in the ANSI C header file
151 <strong>&lt;stdint.h&gt;</strong> are used.</li>
152 <li>#define constants that include expressions must be enclosed by
153 parenthesis.</li>
154 <li>Variables and parameters have a complete data type.</li>
155 <li>All functions in the <strong>Core Peripheral Access Layer</strong> are
156 re-entrant.</li>
157 <li>The <strong>Core Peripheral Access Layer</strong> has no blocking code
158 (which means that wait/query loops are done at other software layers).</li>
159 <li>For each exception/interrupt there is definition for:
160 <ul>
161 <li>an exception/interrupt handler with the postfix <strong>_Handler </strong>
162 (for exceptions) or <strong>_IRQHandler</strong> (for interrupts).</li>
163 <li>a default exception/interrupt handler (weak definition) that contains an endless loop.</li>
164 <li>a #define of the interrupt number with the postfix <strong>_IRQn</strong>.</li>
165 </ul></li>
166</ul>
167
168<h3>Recommendations</h3>
169
170<p>The CMSIS recommends the following conventions for identifiers.</p>
171<ul>
172 <li><strong>CAPITAL</strong> names to identify Core Registers, Peripheral Registers, and CPU Instructions.</li>
173 <li><strong>CamelCase</strong> names to identify peripherals access functions and interrupts.</li>
174 <li><strong>PERIPHERAL_</strong> prefix to identify functions that belong to specify peripherals.</li>
175 <li><strong>Doxygen</strong> comments for all functions are included as described under <strong>Function Comments</strong> below.</li>
176</ul>
177
178<b>Comments</b>
179
180<ul>
181 <li>Comments use the ANSI C90 style (<em>/* comment */</em>) or C++ style
182 (<em>// comment</em>). It is assumed that the programming tools support today
183 consistently the C++ comment style.</li>
184 <li><strong>Function Comments</strong> provide for each function the following information:
185 <ul>
186 <li>one-line brief function overview.</li>
187 <li>detailed parameter explanation.</li>
188 <li>detailed information about return values.</li>
189 <li>detailed description of the actual function.</li>
190 </ul>
191 <p><b>Doxygen Example:</b></p>
192 <pre>
193/**
194 * @brief Enable Interrupt in NVIC Interrupt Controller
195 * @param IRQn interrupt number that specifies the interrupt
196 * @return none.
197 * Enable the specified interrupt in the NVIC Interrupt Controller.
198 * Other settings of the interrupt such as priority are not affected.
199 */</pre>
200 </li>
201</ul>
202
203<h3>Data Types and IO Type Qualifiers</h3>
204
205<p>
206 The <strong>Cortex-M HAL</strong> uses the standard types from the standard ANSI C header file
207 <strong>&lt;stdint.h&gt;</strong>. <strong>IO Type Qualifiers</strong> are used to specify the access
208 to peripheral variables. IO Type Qualifiers are indented to be used for automatic generation of
209 debug information of peripheral registers.
210</p>
211
212<table class="kt" border="0" cellpadding="0" cellspacing="0">
213 <tbody>
214 <tr>
215 <th class="kt" nowrap="nowrap">IO Type Qualifier</th>
216 <th class="kt">#define</th>
217 <th class="kt">Description</th>
218 </tr>
219 <tr>
220 <td class="kt" nowrap="nowrap">__I</td>
221 <td class="kt">volatile const</td>
222 <td class="kt">Read access only</td>
223 </tr>
224 <tr>
225 <td class="kt" nowrap="nowrap">__O</td>
226 <td class="kt">volatile</td>
227 <td class="kt">Write access only</td>
228 </tr>
229 <tr>
230 <td class="kt" nowrap="nowrap">__IO</td>
231 <td class="kt">volatile</td>
232 <td class="kt">Read and write access</td>
233 </tr>
234 </tbody>
235</table>
236
237<h3>CMSIS Version Number</h3>
238<p>
239 File <strong>core_cm3.h</strong> contains the version number of the CMSIS with the following define:
240</p>
241
242<pre>
243#define __CM3_CMSIS_VERSION_MAIN (0x01) /* [31:16] main version */
244#define __CM3_CMSIS_VERSION_SUB (0x30) /* [15:0] sub version */
245#define __CM3_CMSIS_VERSION ((__CM3_CMSIS_VERSION_MAIN &lt;&lt; 16) | __CM3_CMSIS_VERSION_SUB)</pre>
246
247<p>
248 File <strong>core_cm0.h</strong> contains the version number of the CMSIS with the following define:
249</p>
250
251<pre>
252#define __CM0_CMSIS_VERSION_MAIN (0x01) /* [31:16] main version */
253#define __CM0_CMSIS_VERSION_SUB (0x30) /* [15:0] sub version */
254#define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN &lt;&lt; 16) | __CM0_CMSIS_VERSION_SUB)</pre>
255
256
257<h3>CMSIS Cortex Core</h3>
258<p>
259 File <strong>core_cm3.h</strong> contains the type of the CMSIS Cortex-M with the following define:
260</p>
261
262<pre>
263#define __CORTEX_M (0x03)</pre>
264
265<p>
266 File <strong>core_cm0.h</strong> contains the type of the CMSIS Cortex-M with the following define:
267</p>
268
269<pre>
270#define __CORTEX_M (0x00)</pre>
271
272
273<h2><a name="3"></a>CMSIS Files</h2>
274<p>
275 This section describes the Files provided in context with the CMSIS to access the Cortex-M
276 hardware and peripherals.
277</p>
278
279<table class="kt" border="0" cellpadding="0" cellspacing="0">
280 <tbody>
281 <tr>
282 <th class="kt" nowrap="nowrap">File</th>
283 <th class="kt">Provider</th>
284 <th class="kt">Description</th>
285 </tr>
286 <tr>
287 <td class="kt" nowrap="nowrap"><i>device.h</i></td>
288 <td class="kt">Device specific (provided by silicon partner)</td>
289 <td class="kt">Defines the peripherals for the actual device. The file may use
290 several other include files to define the peripherals of the actual device.</td>
291 </tr>
292 <tr>
293 <td class="kt" nowrap="nowrap">core_cm0.h</td>
294 <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
295 <td class="kt">Defines the core peripherals for the Cortex-M0 CPU and core peripherals.</td>
296 </tr>
297 <tr>
298 <td class="kt" nowrap="nowrap">core_cm3.h</td>
299 <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
300 <td class="kt">Defines the core peripherals for the Cortex-M3 CPU and core peripherals.</td>
301 </tr>
302 <tr>
303 <td class="kt" nowrap="nowrap">core_cm0.c</td>
304 <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
305 <td class="kt">Provides helper functions that access core registers.</td>
306 </tr>
307 <tr>
308 <td class="kt" nowrap="nowrap">core_cm3.c</td>
309 <td class="kt">ARM (for RealView ARMCC, IAR, and GNU GCC)</td>
310 <td class="kt">Provides helper functions that access core registers.</td>
311 </tr>
312 <tr>
313 <td class="kt" nowrap="nowrap">startup<i>_device</i></td>
314 <td class="kt">ARM (adapted by compiler partner / silicon partner)</td>
315 <td class="kt">Provides the Cortex-M startup code and the complete (device specific) Interrupt Vector Table</td>
316 </tr>
317 <tr>
318 <td class="kt" nowrap="nowrap">system<i>_device</i></td>
319 <td class="kt">ARM (adapted by silicon partner)</td>
320 <td class="kt">Provides a device specific configuration file for the device. It configures the device initializes
321 typically the oscillator (PLL) that is part of the microcontroller device</td>
322 </tr>
323 </tbody>
324</table>
325
326<h3><em>device.h</em></h3>
327
328<p>
329 The file <em><strong>device.h</strong></em> is provided by the silicon vendor and is the
330 <u><strong>central include file</strong></u> that the application programmer is using in
331 the C source code. This file contains:
332</p>
333<ul>
334 <li>
335 <p><strong>Interrupt Number Definition</strong>: provides interrupt numbers
336 (IRQn) for all core and device specific exceptions and interrupts.</p>
337 </li>
338 <li>
339 <p><strong>Configuration for core_cm0.h / core_cm3.h</strong>: reflects the
340 actual configuration of the Cortex-M processor that is part of the actual
341 device. As such the file <strong>core_cm0.h / core_cm3.h</strong> is included that
342 implements access to processor registers and core peripherals. </p>
343 </li>
344 <li>
345 <p><strong>Device Peripheral Access Layer</strong>: provides definitions
346 for all device peripherals. It contains all data structures and the address
347 mapping for the device specific peripherals. </p>
348 </li>
349 <li><strong>Access Functions for Peripherals (optional)</strong>: provides
350 additional helper functions for peripherals that are useful for programming
351 of these peripherals. Access Functions may be provided as inline functions
352 or can be extern references to a device specific library provided by the
353 silicon vendor.</li>
354</ul>
355
356
357<h4><strong>Interrupt Number Definition</strong></h4>
358
359<p>To access the device specific interrupts the device.h file defines IRQn
360numbers for the complete device using a enum typedef as shown below:</p>
361<pre>
362typedef enum IRQn
363{
364/****** Cortex-M3 Processor Exceptions/Interrupt Numbers ************************************************/
365 NonMaskableInt_IRQn = -14, /*!&lt; 2 Non Maskable Interrupt */
366 HardFault_IRQn = -13, /*!&lt; 3 Cortex-M3 Hard Fault Interrupt */
367 MemoryManagement_IRQn = -12, /*!&lt; 4 Cortex-M3 Memory Management Interrupt */
368 BusFault_IRQn = -11, /*!&lt; 5 Cortex-M3 Bus Fault Interrupt */
369 UsageFault_IRQn = -10, /*!&lt; 6 Cortex-M3 Usage Fault Interrupt */
370 SVCall_IRQn = -5, /*!&lt; 11 Cortex-M3 SV Call Interrupt */
371 DebugMonitor_IRQn = -4, /*!&lt; 12 Cortex-M3 Debug Monitor Interrupt */
372 PendSV_IRQn = -2, /*!&lt; 14 Cortex-M3 Pend SV Interrupt */
373 SysTick_IRQn = -1, /*!&lt; 15 Cortex-M3 System Tick Interrupt */
374/****** STM32 specific Interrupt Numbers ****************************************************************/
375 WWDG_STM_IRQn = 0, /*!&lt; Window WatchDog Interrupt */
376 PVD_STM_IRQn = 1, /*!&lt; PVD through EXTI Line detection Interrupt */
377 :
378 :
379 } IRQn_Type;</pre>
380
381
382<h4>Configuration for core_cm0.h / core_cm3.h</h4>
383<p>
384 The Cortex-M core configuration options which are defined for each device implementation. Some
385 configuration options are reflected in the CMSIS layer using the #define settings described below.
386</p>
387<p>
388 To access core peripherals file <em><strong>device.h</strong></em> includes file <b>core_cm0.h / core_cm3.h</b>.
389 Several features in <strong>core_cm0.h / core_cm3.h</strong> are configured by the following defines that must be
390 defined before <strong>#include &lt;core_cm0.h&gt;</strong> / <strong>#include &lt;core_cm3.h&gt;</strong>
391 preprocessor command.
392</p>
393
394<table class="kt" border="0" cellpadding="0" cellspacing="0">
395 <tbody>
396 <tr>
397 <th class="kt" nowrap="nowrap">#define</th>
398 <th class="kt" nowrap="nowrap">File</th>
399 <th class="kt" nowrap="nowrap">Value</th>
400 <th class="kt">Description</th>
401 </tr>
402 <tr>
403 <td class="kt" nowrap="nowrap">__NVIC_PRIO_BITS</td>
404 <td class="kt">core_cm0.h</td>
405 <td class="kt" nowrap="nowrap">(2)</td>
406 <td class="kt">Number of priority bits implemented in the NVIC (device specific)</td>
407 </tr>
408 <tr>
409 <td class="kt" nowrap="nowrap">__NVIC_PRIO_BITS</td>
410 <td class="kt">core_cm3.h</td>
411 <td class="kt" nowrap="nowrap">(2 ... 8)</td>
412 <td class="kt">Number of priority bits implemented in the NVIC (device specific)</td>
413 </tr>
414 <tr>
415 <td class="kt" nowrap="nowrap">__MPU_PRESENT</td>
416 <td class="kt">core_cm0.h, core_cm3.h</td>
417 <td class="kt" nowrap="nowrap">(0, 1)</td>
418 <td class="kt">Defines if an MPU is present or not</td>
419 </tr>
420 <tr>
421 <td class="kt" nowrap="nowrap">__Vendor_SysTickConfig</td>
422 <td class="kt">core_cm0.h, core_cm3.h</td>
423 <td class="kt" nowrap="nowrap">(1)</td>
424 <td class="kt">When this define is setup to 1, the <strong>SysTickConfig</strong> function
425 in <strong>core_cm3.h</strong> is excluded. In this case the <em><strong>device.h</strong></em>
426 file must contain a vendor specific implementation of this function.</td>
427 </tr>
428 </tbody>
429</table>
430
431
432<h4>Device Peripheral Access Layer</h4>
433<p>
434 Each peripheral uses a prefix which consists of <strong>&lt;device abbreviation&gt;_</strong>
435 and <strong>&lt;peripheral name&gt;_</strong> to identify peripheral registers that access this
436 specific peripheral. The intention of this is to avoid name collisions caused
437 due to short names. If more than one peripheral of the same type exists,
438 identifiers have a postfix (digit or letter). For example:
439</p>
440<ul>
441 <li>&lt;device abbreviation&gt;_UART_Type: defines the generic register layout for all UART channels in a device.
442 <pre>
443typedef struct
444{
445 union {
446 __I uint8_t RBR; /*!< Offset: 0x000 Receiver Buffer Register */
447 __O uint8_t THR; /*!< Offset: 0x000 Transmit Holding Register */
448 __IO uint8_t DLL; /*!< Offset: 0x000 Divisor Latch LSB */
449 uint32_t RESERVED0;
450 };
451 union {
452 __IO uint8_t DLM; /*!< Offset: 0x004 Divisor Latch MSB */
453 __IO uint32_t IER; /*!< Offset: 0x004 Interrupt Enable Register */
454 };
455 union {
456 __I uint32_t IIR; /*!< Offset: 0x008 Interrupt ID Register */
457 __O uint8_t FCR; /*!< Offset: 0x008 FIFO Control Register */
458 };
459 __IO uint8_t LCR; /*!< Offset: 0x00C Line Control Register */
460 uint8_t RESERVED1[7];
461 __I uint8_t LSR; /*!< Offset: 0x014 Line Status Register */
462 uint8_t RESERVED2[7];
463 __IO uint8_t SCR; /*!< Offset: 0x01C Scratch Pad Register */
464 uint8_t RESERVED3[3];
465 __IO uint32_t ACR; /*!< Offset: 0x020 Autobaud Control Register */
466 __IO uint8_t ICR; /*!< Offset: 0x024 IrDA Control Register */
467 uint8_t RESERVED4[3];
468 __IO uint8_t FDR; /*!< Offset: 0x028 Fractional Divider Register */
469 uint8_t RESERVED5[7];
470 __IO uint8_t TER; /*!< Offset: 0x030 Transmit Enable Register */
471 uint8_t RESERVED6[39];
472 __I uint8_t FIFOLVL; /*!< Offset: 0x058 FIFO Level Register */
473} LPC_UART_TypeDef;</pre>
474 </li>
475 <li>&lt;device abbreviation&gt;_UART1: is a pointer to a register structure that refers to a specific UART.
476 For example UART1-&gt;DR is the data register of UART1.
477 <pre>
478#define LPC_UART2 ((LPC_UART_TypeDef *) LPC_UART2_BASE )
479#define LPC_UART3 ((LPC_UART_TypeDef *) LPC_UART3_BASE )</pre>
480 </li>
481</ul>
482
483<h5>Minimal Requiements</h5>
484<p>
485 To access the peripheral registers and related function in a device the files <strong><em>device.h</em></strong>
486 and <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong> defines as a minimum:
487</p>
488<ul>
489 <li>The <strong>Register Layout Typedef</strong> for each peripheral that defines all register names.
490 Names that start with RESERVE are used to introduce space into the structure to adjust the addresses of
491 the peripheral registers. For example:
492 <pre>
493typedef struct {
494 __IO uint32_t CTRL; /* SysTick Control and Status Register */
495 __IO uint32_t LOAD; /* SysTick Reload Value Register */
496 __IO uint32_t VAL; /* SysTick Current Value Register */
497 __I uint32_t CALIB; /* SysTick Calibration Register */
498 } SysTick_Type;</pre>
499 </li>
500
501 <li>
502 <strong>Base Address</strong> for each peripheral (in case of multiple peripherals
503 that use the same <strong>register layout typedef</strong> multiple base addresses are defined). For example:
504 <pre>
505#define SysTick_BASE (SCS_BASE + 0x0010) /* SysTick Base Address */</pre>
506 </li>
507
508 <li>
509 <strong>Access Definition</strong> for each peripheral (in case of multiple peripherals that use
510 the same <strong>register layout typedef</strong> multiple access definitions exist, i.e. LPC_UART0,
511 LPC_UART2). For Example:
512 <pre>
513#define SysTick ((SysTick_Type *) SysTick_BASE) /* SysTick access definition */</pre>
514 </li>
515</ul>
516
517<p>
518 These definitions allow to access the peripheral registers from user code with simple assignments like:
519</p>
520<pre>SysTick-&gt;CTRL = 0;</pre>
521
522<h5>Optional Features</h5>
523<p>In addition the <em> <strong>device.h </strong></em>file may define:</p>
524<ul>
525 <li>
526 #define constants that simplify access to the peripheral registers.
527 These constant define bit-positions or other specific patterns are that required for the
528 programming of the peripheral registers. The identifiers used start with
529 <strong>&lt;device abbreviation&gt;_</strong> and <strong>&lt;peripheral name&gt;_</strong>.
530 It is recommended to use CAPITAL letters for such #define constants.
531 </li>
532 <li>
533 Functions that perform more complex functions with the peripheral (i.e. status query before
534 a sending register is accessed). Again these function start with
535 <strong>&lt;device abbreviation&gt;_</strong> and <strong>&lt;peripheral name&gt;_</strong>.
536 </li>
537</ul>
538
539<h3>core_cm0.h and core_cm0.c</h3>
540<p>
541 File <b>core_cm0.h</b> describes the data structures for the Cortex-M0 core peripherals and does
542 the address mapping of this structures. It also provides basic access to the Cortex-M0 core registers
543 and core peripherals with efficient functions (defined as <strong>static inline</strong>).
544</p>
545<p>
546 File <b>core_cm0.c</b> defines several helper functions that access processor registers.
547</p>
548<p>Together these files implement the <a href="#4">Core Peripheral Access Layer</a> for a Cortex-M0.</p>
549
550<h3>core_cm3.h and core_cm3.c</h3>
551<p>
552 File <b>core_cm3.h</b> describes the data structures for the Cortex-M3 core peripherals and does
553 the address mapping of this structures. It also provides basic access to the Cortex-M3 core registers
554 and core peripherals with efficient functions (defined as <strong>static inline</strong>).
555</p>
556<p>
557 File <b>core_cm3.c</b> defines several helper functions that access processor registers.
558</p>
559<p>Together these files implement the <a href="#4">Core Peripheral Access Layer</a> for a Cortex-M3.</p>
560
561<h3>startup_<em>device</em></h3>
562<p>
563 A template file for <strong>startup_<em>device</em></strong> is provided by ARM for each supported
564 compiler. It is adapted by the silicon vendor to include interrupt vectors for all device specific
565 interrupt handlers. Each interrupt handler is defined as <strong><em>weak</em></strong> function
566 to an dummy handler. Therefore the interrupt handler can be directly used in application software
567 without any requirements to adapt the <strong>startup_<em>device</em></strong> file.
568</p>
569<p>
570 The following exception names are fixed and define the start of the vector table for a Cortex-M0:
571</p>
572<pre>
573__Vectors DCD __initial_sp ; Top of Stack
574 DCD Reset_Handler ; Reset Handler
575 DCD NMI_Handler ; NMI Handler
576 DCD HardFault_Handler ; Hard Fault Handler
577 DCD 0 ; Reserved
578 DCD 0 ; Reserved
579 DCD 0 ; Reserved
580 DCD 0 ; Reserved
581 DCD 0 ; Reserved
582 DCD 0 ; Reserved
583 DCD 0 ; Reserved
584 DCD SVC_Handler ; SVCall Handler
585 DCD 0 ; Reserved
586 DCD 0 ; Reserved
587 DCD PendSV_Handler ; PendSV Handler
588 DCD SysTick_Handler ; SysTick Handler</pre>
589
590<p>
591 The following exception names are fixed and define the start of the vector table for a Cortex-M3:
592</p>
593<pre>
594__Vectors DCD __initial_sp ; Top of Stack
595 DCD Reset_Handler ; Reset Handler
596 DCD NMI_Handler ; NMI Handler
597 DCD HardFault_Handler ; Hard Fault Handler
598 DCD MemManage_Handler ; MPU Fault Handler
599 DCD BusFault_Handler ; Bus Fault Handler
600 DCD UsageFault_Handler ; Usage Fault Handler
601 DCD 0 ; Reserved
602 DCD 0 ; Reserved
603 DCD 0 ; Reserved
604 DCD 0 ; Reserved
605 DCD SVC_Handler ; SVCall Handler
606 DCD DebugMon_Handler ; Debug Monitor Handler
607 DCD 0 ; Reserved
608 DCD PendSV_Handler ; PendSV Handler
609 DCD SysTick_Handler ; SysTick Handler</pre>
610
611<p>
612 In the following examples for device specific interrupts are shown:
613</p>
614<pre>
615; External Interrupts
616 DCD WWDG_IRQHandler ; Window Watchdog
617 DCD PVD_IRQHandler ; PVD through EXTI Line detect
618 DCD TAMPER_IRQHandler ; Tamper</pre>
619
620<p>
621 Device specific interrupts must have a dummy function that can be overwritten in user code.
622 Below is an example for this dummy function.
623</p>
624<pre>
625Default_Handler PROC
626 EXPORT WWDG_IRQHandler [WEAK]
627 EXPORT PVD_IRQHandler [WEAK]
628 EXPORT TAMPER_IRQHandler [WEAK]
629 :
630 :
631 WWDG_IRQHandler
632 PVD_IRQHandler
633 TAMPER_IRQHandler
634 :
635 :
636 B .
637 ENDP</pre>
638
639<p>
640 The user application may simply define an interrupt handler function by using the handler name
641 as shown below.
642</p>
643<pre>
644void WWDG_IRQHandler(void)
645{
646 :
647 :
648}</pre>
649
650
651<h3><a name="4"></a>system_<em>device</em>.c</h3>
652<p>
653 A template file for <strong>system_<em>device</em>.c</strong> is provided by ARM but adapted by
654 the silicon vendor to match their actual device. As a <strong>minimum requirement</strong>
655 this file must provide a device specific system configuration function and a global variable
656 that contains the system frequency. It configures the device and initializes typically the
657 oscillator (PLL) that is part of the microcontroller device.
658</p>
659<p>
660 The file <strong>system_</strong><em><strong>device</strong></em><strong>.c</strong> must provide
661 as a minimum requirement the SystemInit function as shown below.
662</p>
663
664<table class="kt" border="0" cellpadding="0" cellspacing="0">
665 <tbody>
666 <tr>
667 <th class="kt">Function Definition</th>
668 <th class="kt">Description</th>
669 </tr>
670 <tr>
671 <td class="kt" nowrap="nowrap">void SystemInit (void)</td>
672 <td class="kt">Setup the microcontroller system. Typically this function configures the
673 oscillator (PLL) that is part of the microcontroller device. For systems
674 with variable clock speed it also updates the variable SystemCoreClock.<br>
675 SystemInit is called from startup<i>_device</i> file.</td>
676 </tr>
677 <tr>
678 <td class="kt" nowrap="nowrap">void SystemCoreClockUpdate (void)</td>
679 <td class="kt">Updates the variable SystemCoreClock and must be called whenever the
680 core clock is changed during program execution. SystemCoreClockUpdate()
681 evaluates the clock register settings and calculates the current core clock.
682</td>
683 </tr>
684 </tbody>
685</table>
686
687<p>
688 Also part of the file <strong>system_</strong><em><strong>device</strong></em><strong>.c</strong>
689 is the variable <strong>SystemCoreClock</strong> which contains the current CPU clock speed shown below.
690</p>
691
692<table class="kt" border="0" cellpadding="0" cellspacing="0">
693 <tbody>
694 <tr>
695 <th class="kt">Variable Definition</th>
696 <th class="kt">Description</th>
697 </tr>
698 <tr>
699 <td class="kt" nowrap="nowrap">uint32_t SystemCoreClock</td>
700 <td class="kt">Contains the system core clock (which is the system clock frequency supplied
701 to the SysTick timer and the processor core clock). This variable can be
702 used by the user application to setup the SysTick timer or configure other
703 parameters. It may also be used by debugger to query the frequency of the
704 debug timer or configure the trace clock speed.<br>
705 SystemCoreClock is initialized with a correct predefined value.<br><br>
706 The compiler must be configured to avoid the removal of this variable in
707 case that the application program is not using it. It is important for
708 debug systems that the variable is physically present in memory so that
709 it can be examined to configure the debugger.</td>
710 </tr>
711 </tbody>
712</table>
713
714<p class="Note">Note</p>
715<ul>
716 <li><p>The above definitions are the minimum requirements for the file <strong>
717 system_</strong><em><strong>device</strong></em><strong>.c</strong>. This
718 file may export more functions or variables that provide a more flexible
719 configuration of the microcontroller system.</p>
720 </li>
721</ul>
722
723
724<h2>Core Peripheral Access Layer</h2>
725
726<h3>Cortex-M Core Register Access</h3>
727<p>
728 The following functions are defined in <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong>
729 and provide access to Cortex-M core registers.
730</p>
731
732<table class="kt" border="0" cellpadding="0" cellspacing="0">
733 <tbody>
734 <tr>
735 <th class="kt">Function Definition</th>
736 <th class="kt">Core</th>
737 <th class="kt">Core Register</th>
738 <th class="kt">Description</th>
739 </tr>
740 <tr>
741 <td class="kt" nowrap="nowrap">void __enable_irq (void)</td>
742 <td class="kt">M0, M3</td>
743 <td class="kt">PRIMASK = 0</td>
744 <td class="kt">Global Interrupt enable (using the instruction <strong>CPSIE
745 i</strong>)</td>
746 </tr>
747 <tr>
748 <td class="kt" nowrap="nowrap">void __disable_irq (void)</td>
749 <td class="kt">M0, M3</td>
750 <td class="kt">PRIMASK = 1</td>
751 <td class="kt">Global Interrupt disable (using the instruction <strong>
752 CPSID i</strong>)</td>
753 </tr>
754 <tr>
755 <td class="kt" nowrap="nowrap">void __set_PRIMASK (uint32_t value)</td>
756 <td class="kt">M0, M3</td>
757 <td class="kt">PRIMASK = value</td>
758 <td class="kt">Assign value to Priority Mask Register (using the instruction
759 <strong>MSR</strong>)</td>
760 </tr>
761 <tr>
762 <td class="kt" nowrap="nowrap">uint32_t __get_PRIMASK (void)</td>
763 <td class="kt">M0, M3</td>
764 <td class="kt">return PRIMASK</td>
765 <td class="kt">Return Priority Mask Register (using the instruction
766 <strong>MRS</strong>)</td>
767 </tr>
768 <tr>
769 <td class="kt" nowrap="nowrap">void __enable_fault_irq (void)</td>
770 <td class="kt">M3</td>
771 <td class="kt">FAULTMASK = 0</td>
772 <td class="kt">Global Fault exception and Interrupt enable (using the
773 instruction <strong>CPSIE
774 f</strong>)</td>
775 </tr>
776 <tr>
777 <td class="kt" nowrap="nowrap">void __disable_fault_irq (void)</td>
778 <td class="kt">M3</td>
779 <td class="kt">FAULTMASK = 1</td>
780 <td class="kt">Global Fault exception and Interrupt disable (using the
781 instruction <strong>CPSID f</strong>)</td>
782 </tr>
783 <tr>
784 <td class="kt" nowrap="nowrap">void __set_FAULTMASK (uint32_t value)</td>
785 <td class="kt">M3</td>
786 <td class="kt">FAULTMASK = value</td>
787 <td class="kt">Assign value to Fault Mask Register (using the instruction
788 <strong>MSR</strong>)</td>
789 </tr>
790 <tr>
791 <td class="kt" nowrap="nowrap">uint32_t __get_FAULTMASK (void)</td>
792 <td class="kt">M3</td>
793 <td class="kt">return FAULTMASK</td>
794 <td class="kt">Return Fault Mask Register (using the instruction <strong>MRS</strong>)</td>
795 </tr>
796 <tr>
797 <td class="kt" nowrap="nowrap">void __set_BASEPRI (uint32_t value)</td>
798 <td class="kt">M3</td>
799 <td class="kt">BASEPRI = value</td>
800 <td class="kt">Set Base Priority (using the instruction <strong>MSR</strong>)</td>
801 </tr>
802 <tr>
803 <td class="kt" nowrap="nowrap">uiuint32_t __get_BASEPRI (void)</td>
804 <td class="kt">M3</td>
805 <td class="kt">return BASEPRI</td>
806 <td class="kt">Return Base Priority (using the instruction <strong>MRS</strong>)</td>
807 </tr>
808 <tr>
809 <td class="kt" nowrap="nowrap">void __set_CONTROL (uint32_t value)</td>
810 <td class="kt">M0, M3</td>
811 <td class="kt">CONTROL = value</td>
812 <td class="kt">Set CONTROL register value (using the instruction <strong>MSR</strong>)</td>
813 </tr>
814 <tr>
815 <td class="kt" nowrap="nowrap">uint32_t __get_CONTROL (void)</td>
816 <td class="kt">M0, M3</td>
817 <td class="kt">return CONTROL</td>
818 <td class="kt">Return Control Register Value (using the instruction
819 <strong>MRS</strong>)</td>
820 </tr>
821 <tr>
822 <td class="kt" nowrap="nowrap">void __set_PSP (uint32_t TopOfProcStack)</td>
823 <td class="kt">M0, M3</td>
824 <td class="kt">PSP = TopOfProcStack</td>
825 <td class="kt">Set Process Stack Pointer value (using the instruction
826 <strong>MSR</strong>)</td>
827 </tr>
828 <tr>
829 <td class="kt" nowrap="nowrap">uint32_t __get_PSP (void)</td>
830 <td class="kt">M0, M3</td>
831 <td class="kt">return PSP</td>
832 <td class="kt">Return Process Stack Pointer (using the instruction <strong>MRS</strong>)</td>
833 </tr>
834 <tr>
835 <td class="kt" nowrap="nowrap">void __set_MSP (uint32_t TopOfMainStack)</td>
836 <td class="kt">M0, M3</td>
837 <td class="kt">MSP = TopOfMainStack</td>
838 <td class="kt">Set Main Stack Pointer (using the instruction <strong>MSR</strong>)</td>
839 </tr>
840 <tr>
841 <td class="kt" nowrap="nowrap">uint32_t __get_MSP (void)</td>
842 <td class="kt">M0, M3</td>
843 <td class="kt">return MSP</td>
844 <td class="kt">Return Main Stack Pointer (using the instruction <strong>MRS</strong>)</td>
845 </tr>
846 </tbody>
847</table>
848
849<h3>Cortex-M Instruction Access</h3>
850<p>
851 The following functions are defined in <strong>core_cm0.h</strong> / <strong>core_cm3.h</strong>and
852 generate specific Cortex-M instructions. The functions are implemented in the file
853 <strong>core_cm0.c</strong> / <strong>core_cm3.c</strong>.
854</p>
855
856<table class="kt" border="0" cellpadding="0" cellspacing="0">
857 <tbody>
858 <tr>
859 <th class="kt">Name</th>
860 <th class="kt">Core</th>
861 <th class="kt">Generated CPU Instruction</th>
862 <th class="kt">Description</th>
863 </tr>
864 <tr>
865 <td class="kt" nowrap="nowrap">void __NOP (void)</td>
866 <td class="kt">M0, M3</td>
867 <td class="kt">NOP</td>
868 <td class="kt">No Operation</td>
869 </tr>
870 <tr>
871 <td class="kt" nowrap="nowrap">void __WFI (void)</td>
872 <td class="kt">M0, M3</td>
873 <td class="kt">WFI</td>
874 <td class="kt">Wait for Interrupt</td>
875 </tr>
876 <tr>
877 <td class="kt" nowrap="nowrap">void __WFE (void)</td>
878 <td class="kt">M0, M3</td>
879 <td class="kt">WFE</td>
880 <td class="kt">Wait for Event</td>
881 </tr>
882 <tr>
883 <td class="kt" nowrap="nowrap">void __SEV (void)</td>
884 <td class="kt">M0, M3</td>
885 <td class="kt">SEV</td>
886 <td class="kt">Set Event</td>
887 </tr>
888 <tr>
889 <td class="kt" nowrap="nowrap">void __ISB (void)</td>
890 <td class="kt">M0, M3</td>
891 <td class="kt">ISB</td>
892 <td class="kt">Instruction Synchronization Barrier</td>
893 </tr>
894 <tr>
895 <td class="kt" nowrap="nowrap">void __DSB (void)</td>
896 <td class="kt">M0, M3</td>
897 <td class="kt">DSB</td>
898 <td class="kt">Data Synchronization Barrier</td>
899 </tr>
900 <tr>
901 <td class="kt" nowrap="nowrap">void __DMB (void)</td>
902 <td class="kt">M0, M3</td>
903 <td class="kt">DMB</td>
904 <td class="kt">Data Memory Barrier</td>
905 </tr>
906 <tr>
907 <td class="kt" nowrap="nowrap">uint32_t __REV (uint32_t value)</td>
908 <td class="kt">M0, M3</td>
909 <td class="kt">REV</td>
910 <td class="kt">Reverse byte order in integer value.</td>
911 </tr>
912 <tr>
913 <td class="kt" nowrap="nowrap">uint32_t __REV16 (uint16_t value)</td>
914 <td class="kt">M0, M3</td>
915 <td class="kt">REV16</td>
916 <td class="kt">Reverse byte order in unsigned short value. </td>
917 </tr>
918 <tr>
919 <td class="kt" nowrap="nowrap">sint32_t __REVSH (sint16_t value)</td>
920 <td class="kt">M0, M3</td>
921 <td class="kt">REVSH</td>
922 <td class="kt">Reverse byte order in signed short value with sign extension to integer.</td>
923 </tr>
924 <tr>
925 <td class="kt" nowrap="nowrap">uint32_t __RBIT (uint32_t value)</td>
926 <td class="kt">M3</td>
927 <td class="kt">RBIT</td>
928 <td class="kt">Reverse bit order of value</td>
929 </tr>
930 <tr>
931 <td class="kt" nowrap="nowrap">uint8_t __LDREXB (uint8_t *addr)</td>
932 <td class="kt">M3</td>
933 <td class="kt">LDREXB</td>
934 <td class="kt">Load exclusive byte</td>
935 </tr>
936 <tr>
937 <td class="kt" nowrap="nowrap">uint16_t __LDREXH (uint16_t *addr)</td>
938 <td class="kt">M3</td>
939 <td class="kt">LDREXH</td>
940 <td class="kt">Load exclusive half-word</td>
941 </tr>
942 <tr>
943 <td class="kt" nowrap="nowrap">uint32_t __LDREXW (uint32_t *addr)</td>
944 <td class="kt">M3</td>
945 <td class="kt">LDREXW</td>
946 <td class="kt">Load exclusive word</td>
947 </tr>
948 <tr>
949 <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint8_t value, uint8_t *addr)</td>
950 <td class="kt">M3</td>
951 <td class="kt">STREXB</td>
952 <td class="kt">Store exclusive byte</td>
953 </tr>
954 <tr>
955 <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint16_t value, uint16_t *addr)</td>
956 <td class="kt">M3</td>
957 <td class="kt">STREXH</td>
958 <td class="kt">Store exclusive half-word</td>
959 </tr>
960 <tr>
961 <td class="kt" nowrap="nowrap">uint32_t __STREXB (uint32_t value, uint32_t *addr)</td>
962 <td class="kt">M3</td>
963 <td class="kt">STREXW</td>
964 <td class="kt">Store exclusive word</td>
965 </tr>
966 <tr>
967 <td class="kt" nowrap="nowrap">void __CLREX (void)</td>
968 <td class="kt">M3</td>
969 <td class="kt">CLREX</td>
970 <td class="kt">Remove the exclusive lock created by __LDREXB, __LDREXH, or __LDREXW</td>
971 </tr>
972 </tbody>
973</table>
974
975
976<h3>NVIC Access Functions</h3>
977<p>
978 The CMSIS provides access to the NVIC via the register interface structure and several helper
979 functions that simplify the setup of the NVIC. The CMSIS HAL uses IRQ numbers (IRQn) to
980 identify the interrupts. The first device interrupt has the IRQn value 0. Therefore negative
981 IRQn values are used for processor core exceptions.
982</p>
983<p>
984 For the IRQn values of core exceptions the file <strong><em>device.h</em></strong> provides
985 the following enum names.
986</p>
987
988<table class="kt" border="0" cellpadding="0" cellspacing="0">
989 <tbody>
990 <tr>
991 <th class="kt" nowrap="nowrap">Core Exception enum Value</th>
992 <th class="kt">Core</th>
993 <th class="kt">IRQn</th>
994 <th class="kt">Description</th>
995 </tr>
996 <tr>
997 <td class="kt" nowrap="nowrap">NonMaskableInt_IRQn</td>
998 <td class="kt">M0, M3</td>
999 <td class="kt">-14</td>
1000 <td class="kt">Cortex-M Non Maskable Interrupt</td>
1001 </tr>
1002 <tr>
1003 <td class="kt" nowrap="nowrap">HardFault_IRQn</td>
1004 <td class="kt">M0, M3</td>
1005 <td class="kt">-13</td>
1006 <td class="kt">Cortex-M Hard Fault Interrupt</td>
1007 </tr>
1008 <tr>
1009 <td class="kt" nowrap="nowrap">MemoryManagement_IRQn</td>
1010 <td class="kt">M3</td>
1011 <td class="kt">-12</td>
1012 <td class="kt">Cortex-M Memory Management Interrupt</td>
1013 </tr>
1014 <tr>
1015 <td class="kt" nowrap="nowrap">BusFault_IRQn</td>
1016 <td class="kt">M3</td>
1017 <td class="kt">-11</td>
1018 <td class="kt">Cortex-M Bus Fault Interrupt</td>
1019 </tr>
1020 <tr>
1021 <td class="kt" nowrap="nowrap">UsageFault_IRQn</td>
1022 <td class="kt">M3</td>
1023 <td class="kt">-10</td>
1024 <td class="kt">Cortex-M Usage Fault Interrupt</td>
1025 </tr>
1026 <tr>
1027 <td class="kt" nowrap="nowrap">SVCall_IRQn</td>
1028 <td class="kt">M0, M3</td>
1029 <td class="kt">-5</td>
1030 <td class="kt">Cortex-M SV Call Interrupt </td>
1031 </tr>
1032 <tr>
1033 <td class="kt" nowrap="nowrap">DebugMonitor_IRQn</td>
1034 <td class="kt">M3</td>
1035 <td class="kt">-4</td>
1036 <td class="kt">Cortex-M Debug Monitor Interrupt</td>
1037 </tr>
1038 <tr>
1039 <td class="kt" nowrap="nowrap">PendSV_IRQn</td>
1040 <td class="kt">M0, M3</td>
1041 <td class="kt">-2</td>
1042 <td class="kt">Cortex-M Pend SV Interrupt</td>
1043 </tr>
1044 <tr>
1045 <td class="kt" nowrap="nowrap">SysTick_IRQn</td>
1046 <td class="kt">M0, M3</td>
1047 <td class="kt">-1</td>
1048 <td class="kt">Cortex-M System Tick Interrupt</td>
1049 </tr>
1050 </tbody>
1051</table>
1052
1053<p>The following functions simplify the setup of the NVIC.
1054The functions are defined as <strong>static inline</strong>.</p>
1055
1056<table class="kt" border="0" cellpadding="0" cellspacing="0">
1057 <tbody>
1058 <tr>
1059 <th class="kt" nowrap="nowrap">Name</th>
1060 <th class="kt">Core</th>
1061 <th class="kt">Parameter</th>
1062 <th class="kt">Description</th>
1063 </tr>
1064 <tr>
1065 <td class="kt" nowrap="nowrap">void NVIC_SetPriorityGrouping (uint32_t PriorityGroup)</td>
1066 <td class="kt">M3</td>
1067 <td class="kt">Priority Grouping Value</td>
1068 <td class="kt">Set the Priority Grouping (Groups . Subgroups)</td>
1069 </tr>
1070 <tr>
1071 <td class="kt" nowrap="nowrap">uint32_t NVIC_GetPriorityGrouping (void)</td>
1072 <td class="kt">M3</td>
1073 <td class="kt">(void)</td>
1074 <td class="kt">Get the Priority Grouping (Groups . Subgroups)</td>
1075 </tr>
1076 <tr>
1077 <td class="kt" nowrap="nowrap">void NVIC_EnableIRQ (IRQn_Type IRQn)</td>
1078 <td class="kt">M0, M3</td>
1079 <td class="kt">IRQ Number</td>
1080 <td class="kt">Enable IRQn</td>
1081 </tr>
1082 <tr>
1083 <td class="kt" nowrap="nowrap">void NVIC_DisableIRQ (IRQn_Type IRQn)</td>
1084 <td class="kt">M0, M3</td>
1085 <td class="kt">IRQ Number</td>
1086 <td class="kt">Disable IRQn</td>
1087 </tr>
1088 <tr>
1089 <td class="kt" nowrap="nowrap">uint32_t NVIC_GetPendingIRQ (IRQn_Type IRQn)</td>
1090 <td class="kt">M0, M3</td>
1091 <td class="kt">IRQ Number</td>
1092 <td class="kt">Return 1 if IRQn is pending else 0</td>
1093 </tr>
1094 <tr>
1095 <td class="kt" nowrap="nowrap">void NVIC_SetPendingIRQ (IRQn_Type IRQn)</td>
1096 <td class="kt">M0, M3</td>
1097 <td class="kt">IRQ Number</td>
1098 <td class="kt">Set IRQn Pending</td>
1099 </tr>
1100 <tr>
1101 <td class="kt" nowrap="nowrap">void NVIC_ClearPendingIRQ (IRQn_Type IRQn)</td>
1102 <td class="kt">M0, M3</td>
1103 <td class="kt">IRQ Number</td>
1104 <td class="kt">Clear IRQn Pending Status</td>
1105 </tr>
1106 <tr>
1107 <td class="kt" nowrap="nowrap">uint32_t NVIC_GetActive (IRQn_Type IRQn)</td>
1108 <td class="kt">M3</td>
1109 <td class="kt">IRQ Number</td>
1110 <td class="kt">Return 1 if IRQn is active else 0</td>
1111 </tr>
1112 <tr>
1113 <td class="kt" nowrap="nowrap">void NVIC_SetPriority (IRQn_Type IRQn, uint32_t priority)</td>
1114 <td class="kt">M0, M3</td>
1115 <td class="kt">IRQ Number, Priority</td>
1116 <td class="kt">Set Priority for IRQn<br>
1117 (not threadsafe for Cortex-M0)</td>
1118 </tr>
1119 <tr>
1120 <td class="kt" nowrap="nowrap">uint32_t NVIC_GetPriority (IRQn_Type IRQn)</td>
1121 <td class="kt">M0, M3</td>
1122 <td class="kt">IRQ Number</td>
1123 <td class="kt">Get Priority for IRQn</td>
1124 </tr>
1125 <tr>
1126<!-- <td class="kt" nowrap="nowrap">uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)</td> -->
1127 <td class="kt">uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority)</td>
1128 <td class="kt">M3</td>
1129 <td class="kt">IRQ Number, Priority Group, Preemptive Priority, Sub Priority</td>
1130 <td class="kt">Encode priority for given group, preemptive and sub priority</td>
1131 </tr>
1132<!-- <td class="kt" nowrap="nowrap">NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority)</td> -->
1133 <td class="kt">NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* pPreemptPriority, uint32_t* pSubPriority)</td>
1134 <td class="kt">M3</td>
1135 <td class="kt">IRQ Number, Priority, pointer to Priority Group, pointer to Preemptive Priority, pointer to Sub Priority</td>
1136 <td class="kt">Deccode given priority to group, preemptive and sub priority</td>
1137 </tr>
1138 <tr>
1139 <td class="kt" nowrap="nowrap">void NVIC_SystemReset (void)</td>
1140 <td class="kt">M0, M3</td>
1141 <td class="kt">(void)</td>
1142 <td class="kt">Resets the System</td>
1143 </tr>
1144 </tbody>
1145</table>
1146<p class="Note">Note</p>
1147<ul>
1148 <li><p>The processor exceptions have negative enum values. Device specific interrupts
1149 have positive enum values and start with 0. The values are defined in
1150 <b><em>device.h</em></b> file.
1151 </p>
1152 </li>
1153 <li><p>The values for <b>PreemptPriority</b> and <b>SubPriority</b>
1154 used in functions <b>NVIC_EncodePriority</b> and <b>NVIC_DecodePriority</b>
1155 depend on the available __NVIC_PRIO_BITS implemented in the NVIC.
1156 </p>
1157 </li>
1158</ul>
1159
1160
1161<h3>SysTick Configuration Function</h3>
1162
1163<p>The following function is used to configure the SysTick timer and start the
1164SysTick interrupt.</p>
1165
1166<table class="kt" border="0" cellpadding="0" cellspacing="0">
1167 <tbody>
1168 <tr>
1169 <th class="kt" nowrap="nowrap">Name</th>
1170 <th class="kt">Parameter</th>
1171 <th class="kt">Description</th>
1172 </tr>
1173 <tr>
1174 <td class="kt" nowrap="nowrap">uint32_t Sys<span class="style1">TickConfig
1175 (uint32_t ticks)</span></td>
1176 <td class="kt">ticks is SysTick counter reload value</td>
1177 <td class="kt">Setup the SysTick timer and enable the SysTick interrupt. After this
1178 call the SysTick timer creates interrupts with the specified time
1179 interval. <br>
1180 <br>
1181 Return: 0 when successful, 1 on failure.<br>
1182 </td>
1183 </tr>
1184 </tbody>
1185</table>
1186
1187
1188<h3>Cortex-M3 ITM Debug Access</h3>
1189
1190<p>The Cortex-M3 incorporates the Instrumented Trace Macrocell (ITM) that
1191provides together with the Serial Viewer Output trace capabilities for the
1192microcontroller system. The ITM has 32 communication channels; two ITM
1193communication channels are used by CMSIS to output the following information:</p>
1194<ul>
1195 <li>ITM Channel 0: implements the <strong>ITM_SendChar</strong> function
1196 which can be used for printf-style output via the debug interface.</li>
1197 <li>ITM Channel 31: is reserved for the RTOS kernel and can be used for
1198 kernel awareness debugging.</li>
1199</ul>
1200<p class="Note">Note</p>
1201<ul>
1202 <li><p>The ITM channel 31 is selected for the RTOS kernel since some kernels
1203 may use the Privileged level for program execution. ITM
1204 channels have 4 groups with 8 channels each, whereby each group can be
1205 configured for access rights in the Unprivileged level. The ITM channel 0
1206 may be therefore enabled for the user task whereas ITM channel 31 may be
1207 accessible only in Privileged level from the RTOS kernel itself.</p>
1208 </li>
1209</ul>
1210
1211<p>The prototype of the <strong>ITM_SendChar</strong> routine is shown in the
1212table below.</p>
1213
1214<table class="kt" border="0" cellpadding="0" cellspacing="0">
1215 <tbody>
1216 <tr>
1217 <th class="kt" nowrap="nowrap">Name</th>
1218 <th class="kt">Parameter</th>
1219 <th class="kt">Description</th>
1220 </tr>
1221 <tr>
1222 <td class="kt" nowrap="nowrap">void uint32_t ITM_SendChar(uint32_t chr)</td>
1223 <td class="kt">character to output</td>
1224 <td class="kt">The function outputs a character via the ITM channel 0. The
1225 function returns when no debugger is connected that has booked the
1226 output. It is blocking when a debugger is connected, but the
1227 previous character send is not transmitted. <br><br>
1228 Return: the input character 'chr'.</td>
1229 </tr>
1230 </tbody>
1231</table>
1232
1233<p>
1234 Example for the usage of the ITM Channel 31 for RTOS Kernels:
1235</p>
1236<pre>
1237 // check if debugger connected and ITM channel enabled for tracing
1238 if ((CoreDebug-&gt;DEMCR &amp; CoreDebug_DEMCR_TRCENA) &amp;&amp;
1239 (ITM-&gt;TCR &amp; ITM_TCR_ITMENA) &amp;&amp;
1240 (ITM-&gt;TER &amp; (1UL &lt;&lt; 31))) {
1241 // transmit trace data
1242 while (ITM-&gt;PORT31_U32 == 0);
1243 ITM-&gt;PORT[31].u8 = task_id; // id of next task
1244 while (ITM-&gt;PORT[31].u32 == 0);
1245 ITM-&gt;PORT[31].u32 = task_status; // status information
1246 }</pre>
1247
1248
1249<h3>Cortex-M3 additional Debug Access</h3>
1250
1251<p>CMSIS provides additional debug functions to enlarge the Cortex-M3 Debug Access.
1252Data can be transmitted via a certain global buffer variable towards the target system.</p>
1253
1254<p>The buffer variable and the prototypes of the additional functions are shown in the
1255table below.</p>
1256
1257<table class="kt" border="0" cellpadding="0" cellspacing="0">
1258 <tbody>
1259 <tr>
1260 <th class="kt" nowrap="nowrap">Name</th>
1261 <th class="kt">Parameter</th>
1262 <th class="kt">Description</th>
1263 </tr>
1264 <tr>
1265 <td class="kt" nowrap="nowrap">extern volatile int ITM_RxBuffer</td>
1266 <td class="kt"> </td>
1267 <td class="kt">Buffer to transmit data towards debug system. <br><br>
1268 Value 0x5AA55AA5 indicates that buffer is empty.</td>
1269 </tr>
1270 <tr>
1271 <td class="kt" nowrap="nowrap">int ITM_ReceiveChar (void)</td>
1272 <td class="kt">none</td>
1273 <td class="kt">The nonblocking functions returns the character stored in
1274 ITM_RxBuffer. <br><br>
1275 Return: -1 indicates that no character was received.</td>
1276 </tr>
1277 <tr>
1278 <td class="kt" nowrap="nowrap">int ITM_CheckChar (void)</td>
1279 <td class="kt">none</td>
1280 <td class="kt">The function checks if a character is available in ITM_RxBuffer. <br><br>
1281 Return: 1 indicates that a character is available, 0 indicates that
1282 no character is available.</td>
1283 </tr>
1284 </tbody>
1285</table>
1286
1287
1288<h2><a name="5"></a>CMSIS Example</h2>
1289<p>
1290 The following section shows a typical example for using the CMSIS layer in user applications.
1291 The example is based on a STM32F10x Device.
1292</p>
1293<pre>
1294#include "stm32f10x.h"
1295
1296volatile uint32_t msTicks; /* timeTicks counter */
1297
1298void SysTick_Handler(void) {
1299 msTicks++; /* increment timeTicks counter */
1300}
1301
1302__INLINE static void Delay (uint32_t dlyTicks) {
1303 uint32_t curTicks = msTicks;
1304
1305 while ((msTicks - curTicks) &lt; dlyTicks);
1306}
1307
1308__INLINE static void LED_Config(void) {
1309 ; /* Configure the LEDs */
1310}
1311
1312__INLINE static void LED_On (uint32_t led) {
1313 ; /* Turn On LED */
1314}
1315
1316__INLINE static void LED_Off (uint32_t led) {
1317 ; /* Turn Off LED */
1318}
1319
1320int main (void) {
1321 if (SysTick_Config (SystemCoreClock / 1000)) { /* Setup SysTick for 1 msec interrupts */
1322 ; /* Handle Error */
1323 while (1);
1324 }
1325
1326 LED_Config(); /* configure the LEDs */
1327
1328 while(1) {
1329 LED_On (0x100); /* Turn on the LED */
1330 Delay (100); /* delay 100 Msec */
1331 LED_Off (0x100); /* Turn off the LED */
1332 Delay (100); /* delay 100 Msec */
1333 }
1334}</pre>
1335
1336
1337</body></html>