blob: daa7ceed72e55564ac447ce76575770e2fe57aad [file] [log] [blame]
//#define TRACE_LEVEL 6
#include "board.h"
#include "simtrace.h"
#include "ringbuffer.h"
#include "card_emu.h"
#include "iso7816_fidi.h"
#include "utils.h"
#include "linuxlist.h"
#include "llist_irqsafe.h"
#include "req_ctx.h"
#include "cardemu_prot.h"
#define TRACE_ENTRY() TRACE_DEBUG("%s entering\n", __func__)
static const Pin pins_cardsim[] = PINS_CARDSIM;
/* UART pins */
static const Pin pins_usim1[] = {PINS_USIM1};
static const Pin pin_usim1_rst = PIN_USIM1_nRST;
static const Pin pin_usim1_vcc = PIN_USIM1_VCC;
#ifdef CARDEMU_SECOND_UART
static const Pin pins_usim2[] = {PINS_USIM2};
static const Pin pin_usim2_rst = PIN_USIM2_nRST;
static const Pin pin_usim2_vcc = PIN_USIM2_VCC;
#endif
struct cardem_inst {
uint32_t num;
struct card_handle *ch;
struct llist_head usb_out_queue;
struct ringbuf rb;
struct Usart_info usart_info;
int usb_pending_old;
uint8_t ep_out;
uint8_t ep_in;
uint8_t ep_int;
const Pin pin_insert;
uint32_t vcc_uv;
uint32_t vcc_uv_last;
};
static struct cardem_inst cardem_inst[] = {
{
.num = 0,
.usart_info = {
.base = USART1,
.id = ID_USART1,
.state = USART_RCV
},
.ep_out = PHONE_DATAOUT,
.ep_in = PHONE_DATAIN,
.ep_int = PHONE_INT,
.pin_insert = PIN_SET_USIM1_PRES,
},
#ifdef CARDEMU_SECOND_UART
{
.num = 1,
.usart_info = {
.base = USART0,
.id = ID_USART0,
.state = USART_RCV
},
.ep_out = CARDEM_USIM2_DATAOUT,
.ep_in = CARDEM_USIM2_DATAIN,
.ep_int = CARDEM_USIM2_INT,
.pin_insert = PIN_SET_USIM2_PRES,
},
#endif
};
static Usart *get_usart_by_chan(uint8_t uart_chan)
{
switch (uart_chan) {
case 0:
return USART1;
#ifdef CARDEMU_SECOND_UART
case 1:
return USART0;
#endif
}
return NULL;
}
/***********************************************************************
* Call-Backs from card_emu.c
***********************************************************************/
static void wait_tx_idle(Usart *usart)
{
int i = 1;
/* wait until last char has been fully transmitted */
while ((usart->US_CSR & (US_CSR_TXEMPTY)) == 0) {
if (!(i%1000000)) {
TRACE_ERROR("s: %x \r\n", usart->US_CSR);
}
i++;
}
}
void card_emu_uart_wait_tx_idle(uint8_t uart_chan)
{
Usart *usart = get_usart_by_chan(uart_chan);
wait_tx_idle(usart);
}
/* call-back from card_emu.c to enable/disable transmit and/or receive */
void card_emu_uart_enable(uint8_t uart_chan, uint8_t rxtx)
{
Usart *usart = get_usart_by_chan(uart_chan);
switch (rxtx) {
case ENABLE_TX:
USART_DisableIt(usart, ~US_IER_TXRDY);
/* as irritating as it is, we actually want to keep the
* receiver enabled during transmit */
USART_SetReceiverEnabled(usart, 1);
usart->US_CR = US_CR_RSTSTA | US_CR_RSTIT | US_CR_RSTNACK;
USART_EnableIt(usart, US_IER_TXRDY);
USART_SetTransmitterEnabled(usart, 1);
break;
case ENABLE_RX:
USART_DisableIt(usart, ~US_IER_RXRDY);
/* as irritating as it is, we actually want to keep the
* transmitter enabled during receive */
USART_SetTransmitterEnabled(usart, 1);
wait_tx_idle(usart);
usart->US_CR = US_CR_RSTSTA | US_CR_RSTIT | US_CR_RSTNACK;
USART_EnableIt(usart, US_IER_RXRDY);
USART_SetReceiverEnabled(usart, 1);
break;
case 0:
default:
USART_SetTransmitterEnabled(usart, 0);
USART_SetReceiverEnabled(usart, 0);
USART_DisableIt(usart, 0xFFFFFFFF);
usart->US_CR = US_CR_RSTSTA | US_CR_RSTIT | US_CR_RSTNACK;
break;
}
}
/* call-back from card_emu.c to transmit a byte */
int card_emu_uart_tx(uint8_t uart_chan, uint8_t byte)
{
Usart *usart = get_usart_by_chan(uart_chan);
#if 0
Usart_info *ui = &usart_info[uart_chan];
ISO7816_SendChar(byte, ui);
#else
int i = 1;
while ((usart->US_CSR & (US_CSR_TXRDY)) == 0) {
if (!(i%1000000)) {
TRACE_ERROR("%u: s: %x %02X\r\n",
uart_chan, usart->US_CSR,
usart->US_RHR & 0xFF);
usart->US_CR = US_CR_RSTTX;
usart->US_CR = US_CR_RSTRX;
}
i++;
}
usart->US_THR = byte;
//TRACE_ERROR("Sx%02x\r\n", byte);
#endif
return 1;
}
/* FIXME: integrate this with actual irq handler */
static void usart_irq_rx(uint8_t inst_num)
{
Usart *usart = get_usart_by_chan(inst_num);
struct cardem_inst *ci = &cardem_inst[inst_num];
uint32_t csr;
uint8_t byte = 0;
csr = usart->US_CSR & usart->US_IMR;
if (csr & US_CSR_RXRDY) {
byte = (usart->US_RHR) & 0xFF;
rbuf_write(&ci->rb, byte);
}
if (csr & US_CSR_TXRDY) {
if (card_emu_tx_byte(ci->ch) == 0)
USART_DisableIt(usart, US_IER_TXRDY);
}
if (csr & (US_CSR_OVRE|US_CSR_FRAME|US_CSR_PARE|
US_CSR_TIMEOUT|US_CSR_NACK|(1<<10))) {
usart->US_CR = US_CR_RSTSTA | US_CR_RSTIT | US_CR_RSTNACK;
TRACE_ERROR("%u e 0x%x st: 0x%x\n", ci->num, byte, csr);
}
}
void mode_cardemu_usart0_irq(void)
{
/* USART0 == Instance 1 == USIM 2 */
usart_irq_rx(1);
}
void mode_cardemu_usart1_irq(void)
{
/* USART1 == Instance 0 == USIM 1 */
usart_irq_rx(0);
}
/* call-back from card_emu.c to change UART baud rate */
int card_emu_uart_update_fidi(uint8_t uart_chan, unsigned int fidi)
{
int rc;
Usart *usart = get_usart_by_chan(uart_chan);
usart->US_CR |= US_CR_RXDIS | US_CR_RSTRX;
usart->US_FIDI = fidi & 0x3ff;
usart->US_CR |= US_CR_RXEN | US_CR_STTTO;
return 0;
}
/***********************************************************************
* ADC for VCC voltage detection
***********************************************************************/
#ifdef DETECT_VCC_BY_ADC
static int adc_triggered = 0;
static int adc_sam3s_reva_errata = 0;
static int card_vcc_adc_init(void)
{
uint32_t chip_arch = CHIPID->CHIPID_CIDR & CHIPID_CIDR_ARCH_Msk;
uint32_t chip_ver = CHIPID->CHIPID_CIDR & CHIPID_CIDR_VERSION_Msk;
PMC_EnablePeripheral(ID_ADC);
ADC->ADC_CR |= ADC_CR_SWRST;
if (chip_ver == 0 &&
(chip_arch == CHIPID_CIDR_ARCH_SAM3SxA ||
chip_arch == CHIPID_CIDR_ARCH_SAM3SxB ||
chip_arch == CHIPID_CIDR_ARCH_SAM3SxC)) {
TRACE_INFO("Enabling Rev.A ADC Errata work-around\r\n");
adc_sam3s_reva_errata = 1;
}
if (adc_sam3s_reva_errata) {
/* Errata Work-Around to clear EOCx flags */
volatile uint32_t foo;
int i;
for (i = 0; i < 16; i++)
foo = ADC->ADC_CDR[i];
}
/* Initialize ADC for AD7 / AD6, fADC=48/24=2MHz */
ADC->ADC_MR = ADC_MR_TRGEN_DIS | ADC_MR_LOWRES_BITS_12 |
ADC_MR_SLEEP_NORMAL | ADC_MR_FWUP_OFF |
ADC_MR_FREERUN_OFF | ADC_MR_PRESCAL(23) |
ADC_MR_STARTUP_SUT8 | ADC_MR_SETTLING(3) |
ADC_MR_ANACH_NONE | ADC_MR_TRACKTIM(4) |
ADC_MR_TRANSFER(1) | ADC_MR_USEQ_NUM_ORDER;
/* enable AD6 + AD7 channels */
ADC->ADC_CHER = ADC_CHER_CH7;
ADC->ADC_IER = ADC_IER_EOC7;
#ifdef CARDEMU_SECOND_UART
ADC->ADC_CHER |= ADC_CHER_CH6;
ADC->ADC_IER |= ADC_IER_EOC6;
#endif
NVIC_EnableIRQ(ADC_IRQn);
ADC->ADC_CR |= ADC_CR_START;
return 0;
}
#define UV_PER_LSB ((3300 * 1000) / 4096)
#define VCC_UV_THRESH_1V8 1500000
#define VCC_UV_THRESH_3V 2800000
static void process_vcc_adc(struct cardem_inst *ci)
{
if (ci->vcc_uv >= VCC_UV_THRESH_3V &&
ci->vcc_uv_last < VCC_UV_THRESH_3V) {
card_emu_io_statechg(ci->ch, CARD_IO_VCC, 1);
/* FIXME do this for real */
card_emu_io_statechg(ci->ch, CARD_IO_CLK, 1);
} else if (ci->vcc_uv < VCC_UV_THRESH_3V &&
ci->vcc_uv_last >= VCC_UV_THRESH_3V) {
/* FIXME do this for real */
card_emu_io_statechg(ci->ch, CARD_IO_CLK, 0);
card_emu_io_statechg(ci->ch, CARD_IO_VCC, 0);
}
ci->vcc_uv_last = ci->vcc_uv;
}
static uint32_t adc2uv(uint16_t adc)
{
uint32_t uv = (uint32_t) adc * UV_PER_LSB;
return uv;
}
void ADC_IrqHandler(void)
{
#ifdef CARDEMU_SECOND_UART
if (ADC->ADC_ISR & ADC_ISR_EOC6) {
uint16_t val = ADC->ADC_CDR[6] & 0xFFF;
cardem_inst[1].vcc_uv = adc2uv(val);
process_vcc_adc(&cardem_inst[1]);
if (adc_sam3s_reva_errata) {
/* Errata: START doesn't start a conversion
* sequence, but only a single conversion */
ADC->ADC_CR |= ADC_CR_START;
}
}
#endif
if (ADC->ADC_ISR & ADC_ISR_EOC7) {
uint16_t val = ADC->ADC_CDR[7] & 0xFFF;
cardem_inst[0].vcc_uv = adc2uv(val);
process_vcc_adc(&cardem_inst[0]);
ADC->ADC_CR |= ADC_CR_START;
}
}
#endif /* DETECT_VCC_BY_ADC */
/***********************************************************************
* Core USB / mainloop integration
***********************************************************************/
static void usim1_rst_irqhandler(const Pin *pPin)
{
int active = PIO_Get(&pin_usim1_rst) ? 0 : 1;
card_emu_io_statechg(cardem_inst[0].ch, CARD_IO_RST, active);
}
#ifndef DETECT_VCC_BY_ADC
static void usim1_vcc_irqhandler(const Pin *pPin)
{
int active = PIO_Get(&pin_usim1_vcc) ? 1 : 0;
card_emu_io_statechg(cardem_inst[0].ch, CARD_IO_VCC, active);
/* FIXME do this for real */
card_emu_io_statechg(cardem_inst[0].ch, CARD_IO_CLK, active);
}
#endif /* !DETECT_VCC_BY_ADC */
#ifdef CARDEMU_SECOND_UART
static void usim2_rst_irqhandler(const Pin *pPin)
{
int active = PIO_Get(&pin_usim2_rst) ? 0 : 1;
card_emu_io_statechg(cardem_inst[1].ch, CARD_IO_RST, active);
}
#ifndef DETECT_VCC_BY_ADC
static void usim2_vcc_irqhandler(const Pin *pPin)
{
int active = PIO_Get(&pin_usim2_vcc) ? 1 : 0;
card_emu_io_statechg(cardem_inst[1].ch, CARD_IO_VCC, active);
/* FIXME do this for real */
card_emu_io_statechg(cardem_inst[1].ch, CARD_IO_CLK, active);
}
#endif /* !DETECT_VCC_BY_ADC */
#endif /* CARDEMU_SECOND_UART */
/* executed once at system boot for each config */
void mode_cardemu_configure(void)
{
TRACE_ENTRY();
}
/* called if config is activated */
void mode_cardemu_init(void)
{
int i;
TRACE_ENTRY();
PIO_Configure(pins_cardsim, PIO_LISTSIZE(pins_cardsim));
#ifdef DETECT_VCC_BY_ADC
card_vcc_adc_init();
#endif /* DETECT_VCC_BY_ADC */
INIT_LLIST_HEAD(&cardem_inst[0].usb_out_queue);
rbuf_reset(&cardem_inst[0].rb);
PIO_Configure(pins_usim1, PIO_LISTSIZE(pins_usim1));
ISO7816_Init(&cardem_inst[0].usart_info, CLK_SLAVE);
NVIC_EnableIRQ(USART1_IRQn);
PIO_ConfigureIt(&pin_usim1_rst, usim1_rst_irqhandler);
PIO_EnableIt(&pin_usim1_rst);
#ifndef DETECT_VCC_BY_ADC
PIO_ConfigureIt(&pin_usim1_vcc, usim1_vcc_irqhandler);
PIO_EnableIt(&pin_usim1_vcc);
#endif /* DETECT_VCC_BY_ADC */
cardem_inst[0].ch = card_emu_init(0, 2, 0);
#ifdef CARDEMU_SECOND_UART
INIT_LLIST_HEAD(&cardem_inst[1].usb_out_queue);
rbuf_reset(&cardem_inst[1].rb);
PIO_Configure(pins_usim2, PIO_LISTSIZE(pins_usim2));
ISO7816_Init(&cardem_inst[1].usart_info, CLK_SLAVE);
NVIC_EnableIRQ(USART0_IRQn);
PIO_ConfigureIt(&pin_usim2_rst, usim2_rst_irqhandler);
PIO_EnableIt(&pin_usim2_rst);
#ifndef DETECT_VCC_BY_ADC
PIO_ConfigureIt(&pin_usim2_vcc, usim2_vcc_irqhandler);
PIO_EnableIt(&pin_usim2_vcc);
#endif /* DETECT_VCC_BY_ADC */
cardem_inst[1].ch = card_emu_init(1, 0, 1);
#endif /* CARDEMU_SECOND_UART */
}
/* called if config is deactivated */
void mode_cardemu_exit(void)
{
TRACE_ENTRY();
/* FIXME: stop tc_fdt */
/* FIXME: release all rctx, unlink them from any queue */
PIO_DisableIt(&pin_usim1_rst);
PIO_DisableIt(&pin_usim1_vcc);
NVIC_DisableIRQ(USART1_IRQn);
USART_SetTransmitterEnabled(USART1, 0);
USART_SetReceiverEnabled(USART1, 0);
#ifdef CARDEMU_SECOND_UART
PIO_DisableIt(&pin_usim2_rst);
PIO_DisableIt(&pin_usim2_vcc);
NVIC_DisableIRQ(USART0_IRQn);
USART_SetTransmitterEnabled(USART0, 0);
USART_SetReceiverEnabled(USART0, 0);
#endif
}
static int llist_count(struct llist_head *head)
{
struct llist_head *list;
int i = 0;
llist_for_each(list, head)
i++;
return i;
}
/* handle a single USB command as received from the USB host */
static void dispatch_usb_command(struct req_ctx *rctx, struct cardem_inst *ci)
{
struct cardemu_usb_msg_hdr *hdr;
struct cardemu_usb_msg_set_atr *atr;
struct cardemu_usb_msg_cardinsert *cardins;
struct llist_head *queue;
hdr = (struct cardemu_usb_msg_hdr *) rctx->data;
switch (hdr->msg_type) {
case CEMU_USB_MSGT_DT_TX_DATA:
queue = card_emu_get_uart_tx_queue(ci->ch);
req_ctx_set_state(rctx, RCTX_S_UART_TX_PENDING);
llist_add_tail(&rctx->list, queue);
card_emu_have_new_uart_tx(ci->ch);
break;
case CEMU_USB_MSGT_DT_SET_ATR:
atr = (struct cardemu_usb_msg_set_atr *) hdr;
card_emu_set_atr(ci->ch, atr->atr, atr->atr_len);
req_ctx_put(rctx);
break;
case CEMU_USB_MSGT_DT_CARDINSERT:
cardins = (struct cardemu_usb_msg_cardinsert *) hdr;
TRACE_INFO("%u: set card_insert to %s\r\n", ci->num,
cardins->card_insert ? "INSERTED" : "REMOVED");
if (cardins->card_insert)
PIO_Set(&ci->pin_insert);
else
PIO_Clear(&ci->pin_insert);
req_ctx_put(rctx);
break;
case CEMU_USB_MSGT_DT_GET_STATUS:
card_emu_report_status(ci->ch);
break;
case CEMU_USB_MSGT_DT_GET_STATS:
default:
/* FIXME */
req_ctx_put(rctx);
break;
}
}
static void dispatch_received_rctx(struct req_ctx *rctx, struct cardem_inst *ci)
{
struct req_ctx *segm;
struct cardemu_usb_msg_hdr *mh;
int i = 0;
/* check if we have multiple concatenated commands in
* one message. USB endpoints are streams that don't
* preserve the message boundaries */
mh = (struct cardemu_usb_msg_hdr *) rctx->data;
if (mh->msg_len == rctx->tot_len) {
/* fast path: only one message in buffer */
dispatch_usb_command(rctx, ci);
return;
}
/* slow path: iterate over list of messages, allocating one new
* reqe_ctx per segment */
for (mh = (struct cardemu_usb_msg_hdr *) rctx->data;
(uint8_t *)mh < rctx->data + rctx->tot_len;
mh = (struct cardemu_usb_msg_hdr * ) ((uint8_t *)mh + mh->msg_len)) {
segm = req_ctx_find_get(0, RCTX_S_FREE, RCTX_S_MAIN_PROCESSING);
if (!segm) {
TRACE_ERROR("%u: ENOMEM during rctx segmentation\r\n",
ci->num);
break;
}
segm->idx = 0;
segm->tot_len = mh->msg_len;
memcpy(segm->data, mh, segm->tot_len);
dispatch_usb_command(segm, ci);
i++;
}
/* release the master req_ctx, as all segments have been
* processed now */
req_ctx_put(rctx);
}
/* iterate over the queue of incoming USB commands and dispatch/execute
* them */
static void process_any_usb_commands(struct llist_head *main_q,
struct cardem_inst *ci)
{
struct llist_head *lh;
struct req_ctx *rctx;
int i;
/* limit the number of iterations to 10, to ensure we don't get
* stuck here without returning to main loop processing */
for (i = 0; i < 10; i++) {
/* de-queue the list head in an irq-safe way */
lh = llist_head_dequeue_irqsafe(main_q);
if (!lh)
break;
rctx = llist_entry(lh, struct req_ctx, list);
dispatch_received_rctx(rctx, ci);
}
}
/* main loop function, called repeatedly */
void mode_cardemu_run(void)
{
struct llist_head *queue;
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cardem_inst); i++) {
struct cardem_inst *ci = &cardem_inst[i];
/* drain the ring buffer from UART into card_emu */
while (1) {
__disable_irq();
if (rbuf_is_empty(&ci->rb)) {
__enable_irq();
break;
}
uint8_t byte = rbuf_read(&ci->rb);
__enable_irq();
card_emu_process_rx_byte(ci->ch, byte);
//TRACE_ERROR("%uRx%02x\r\n", i, byte);
}
queue = card_emu_get_usb_tx_queue(ci->ch);
int usb_pending = llist_count(queue);
if (usb_pending != ci->usb_pending_old) {
TRACE_DEBUG("%u usb_pending=%d\r\n",
i, usb_pending);
ci->usb_pending_old = usb_pending;
}
usb_refill_to_host(queue, ci->ep_in);
/* ensure we can handle incoming USB messages from the
* host */
queue = &ci->usb_out_queue;
usb_refill_from_host(queue, ci->ep_out);
process_any_usb_commands(queue, ci);
}
}