blob: 60bdffdbfee74f53c4edb06e95fe3fbfc0dc4034 [file] [log] [blame]
Harald Welte867ca292019-07-12 18:21:39 +08001/*------------------------------------------------------------------------
2* SNOW_3G.c
3*------------------------------------------------------------------------*/
4
5#include "snow-3g.h"
6
7/* LFSR */
8
9static u32 LFSR_S0 = 0x00;
10static u32 LFSR_S1 = 0x00;
11static u32 LFSR_S2 = 0x00;
12static u32 LFSR_S3 = 0x00;
13static u32 LFSR_S4 = 0x00;
14static u32 LFSR_S5 = 0x00;
15static u32 LFSR_S6 = 0x00;
16static u32 LFSR_S7 = 0x00;
17static u32 LFSR_S8 = 0x00;
18static u32 LFSR_S9 = 0x00;
19static u32 LFSR_S10 = 0x00;
20static u32 LFSR_S11 = 0x00;
21static u32 LFSR_S12 = 0x00;
22static u32 LFSR_S13 = 0x00;
23static u32 LFSR_S14 = 0x00;
24static u32 LFSR_S15 = 0x00;
25
26/* FSM */
27
28static u32 FSM_R1 = 0x00;
29static u32 FSM_R2 = 0x00;
30static u32 FSM_R3 = 0x00;
31
32/* Rijndael S-box SR */
33
Harald Welte051fd862019-07-12 18:22:35 +080034static const u8 SR[256] = {
Harald Welte867ca292019-07-12 18:21:39 +0800350x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
360xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
370xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
380x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
390x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
400x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
410xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
420x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
430xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
440x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
450xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
460xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
470xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
480x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
490xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
500x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
51};
52
53/* S-box SQ */
54
Harald Welte051fd862019-07-12 18:22:35 +080055static const u8 SQ[256] = {
Harald Welte867ca292019-07-12 18:21:39 +0800560x25,0x24,0x73,0x67,0xD7,0xAE,0x5C,0x30,0xA4,0xEE,0x6E,0xCB,0x7D,0xB5,0x82,0xDB,
570xE4,0x8E,0x48,0x49,0x4F,0x5D,0x6A,0x78,0x70,0x88,0xE8,0x5F,0x5E,0x84,0x65,0xE2,
580xD8,0xE9,0xCC,0xED,0x40,0x2F,0x11,0x28,0x57,0xD2,0xAC,0xE3,0x4A,0x15,0x1B,0xB9,
590xB2,0x80,0x85,0xA6,0x2E,0x02,0x47,0x29,0x07,0x4B,0x0E,0xC1,0x51,0xAA,0x89,0xD4,
600xCA,0x01,0x46,0xB3,0xEF,0xDD,0x44,0x7B,0xC2,0x7F,0xBE,0xC3,0x9F,0x20,0x4C,0x64,
610x83,0xA2,0x68,0x42,0x13,0xB4,0x41,0xCD,0xBA,0xC6,0xBB,0x6D,0x4D,0x71,0x21,0xF4,
620x8D,0xB0,0xE5,0x93,0xFE,0x8F,0xE6,0xCF,0x43,0x45,0x31,0x22,0x37,0x36,0x96,0xFA,
630xBC,0x0F,0x08,0x52,0x1D,0x55,0x1A,0xC5,0x4E,0x23,0x69,0x7A,0x92,0xFF,0x5B,0x5A,
640xEB,0x9A,0x1C,0xA9,0xD1,0x7E,0x0D,0xFC,0x50,0x8A,0xB6,0x62,0xF5,0x0A,0xF8,0xDC,
650x03,0x3C,0x0C,0x39,0xF1,0xB8,0xF3,0x3D,0xF2,0xD5,0x97,0x66,0x81,0x32,0xA0,0x00,
660x06,0xCE,0xF6,0xEA,0xB7,0x17,0xF7,0x8C,0x79,0xD6,0xA7,0xBF,0x8B,0x3F,0x1F,0x53,
670x63,0x75,0x35,0x2C,0x60,0xFD,0x27,0xD3,0x94,0xA5,0x7C,0xA1,0x05,0x58,0x2D,0xBD,
680xD9,0xC7,0xAF,0x6B,0x54,0x0B,0xE0,0x38,0x04,0xC8,0x9D,0xE7,0x14,0xB1,0x87,0x9C,
690xDF,0x6F,0xF9,0xDA,0x2A,0xC4,0x59,0x16,0x74,0x91,0xAB,0x26,0x61,0x76,0x34,0x2B,
700xAD,0x99,0xFB,0x72,0xEC,0x33,0x12,0xDE,0x98,0x3B,0xC0,0x9B,0x3E,0x18,0x10,0x3A,
710x56,0xE1,0x77,0xC9,0x1E,0x9E,0x95,0xA3,0x90,0x19,0xA8,0x6C,0x09,0xD0,0xF0,0x86
72};
73
74/* MULx.
75* Input V: an 8-bit input.
76* Input c: an 8-bit input.
77* Output : an 8-bit output.
78* See section 3.1.1 for details.
79*/
80
Harald Welte135af532019-07-12 18:26:35 +080081static u8 MULx(u8 V, u8 c)
Harald Welte867ca292019-07-12 18:21:39 +080082{
83 if ( V & 0x80 )
84 return ( (V << 1) ^ c);
85 else
86 return ( V << 1);
87}
88
89/* MULxPOW.
90* Input V: an 8-bit input.
91* Input i: a positive integer.
92* Input c: an 8-bit input.
93* Output : an 8-bit output.
94* See section 3.1.2 for details.
95*/
96
Harald Welte135af532019-07-12 18:26:35 +080097static u8 MULxPOW(u8 V, u8 i, u8 c)
Harald Welte867ca292019-07-12 18:21:39 +080098{
99 if ( i == 0)
100 return V;
101 else
102 return MULx( MULxPOW( V, i-1, c ), c);
103}
104
105/* The function MUL alpha.
106* Input c: 8-bit input.
107* Output : 32-bit output.
108* See section 3.4.2 for details.
109*/
110
Harald Welte135af532019-07-12 18:26:35 +0800111static u32 MULalpha(u8 c)
Harald Welte867ca292019-07-12 18:21:39 +0800112{
113 return ( ( ((u32)MULxPOW(c, 23, 0xa9)) << 24 ) |
114 ( ((u32)MULxPOW(c, 245, 0xa9)) << 16 ) |
115 ( ((u32)MULxPOW(c, 48, 0xa9)) << 8 ) |
116 ( ((u32)MULxPOW(c, 239, 0xa9)) ) ) ;
117}
118
119/* The function DIV alpha.
120* Input c: 8-bit input.
121* Output : 32-bit output.
122* See section 3.4.3 for details.
123*/
124
Harald Welte135af532019-07-12 18:26:35 +0800125static u32 DIValpha(u8 c)
Harald Welte867ca292019-07-12 18:21:39 +0800126{
127 return ( ( ((u32)MULxPOW(c, 16, 0xa9)) << 24 ) |
128 ( ((u32)MULxPOW(c, 39, 0xa9)) << 16 ) |
129 ( ((u32)MULxPOW(c, 6, 0xa9)) << 8 ) |
130 ( ((u32)MULxPOW(c, 64, 0xa9)) ) ) ;
131}
132
133/* The 32x32-bit S-Box S1
134* Input: a 32-bit input.
135* Output: a 32-bit output of S1 box.
136* See section 3.3.1.
137*/
138
Harald Welte135af532019-07-12 18:26:35 +0800139static u32 S1(u32 w)
Harald Welte867ca292019-07-12 18:21:39 +0800140{
141 u8 r0=0, r1=0, r2=0, r3=0;
142 u8 srw0 = SR[ (u8)((w >> 24) & 0xff) ];
143 u8 srw1 = SR[ (u8)((w >> 16) & 0xff) ];
144 u8 srw2 = SR[ (u8)((w >> 8) & 0xff) ];
145 u8 srw3 = SR[ (u8)((w) & 0xff) ];
146 r0 = ( ( MULx( srw0 , 0x1b) ) ^
147 ( srw1 ) ^
148 ( srw2 ) ^
149 ( (MULx( srw3, 0x1b)) ^ srw3 )
150 );
151 r1 = ( ( ( MULx( srw0 , 0x1b) ) ^ srw0 ) ^
152 ( MULx(srw1, 0x1b) ) ^
153 ( srw2 ) ^
154 ( srw3 )
155 );
156 r2 = ( ( srw0 ) ^
157 ( ( MULx( srw1 , 0x1b) ) ^ srw1 ) ^
158 ( MULx(srw2, 0x1b) ) ^
159 ( srw3 )
160 );
161 r3 = ( ( srw0 ) ^
162 ( srw1 ) ^
163 ( ( MULx( srw2 , 0x1b) ) ^ srw2 ) ^
164 ( MULx( srw3, 0x1b) )
165 );
166
167 return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
168 ( ((u32)r3) ) );
169}
170
171/* The 32x32-bit S-Box S2
172* Input: a 32-bit input.
173* Output: a 32-bit output of S2 box.
174* See section 3.3.2.
175*/
176
Harald Welte135af532019-07-12 18:26:35 +0800177static u32 S2(u32 w)
Harald Welte867ca292019-07-12 18:21:39 +0800178{
179 u8 r0=0, r1=0, r2=0, r3=0;
180 u8 sqw0 = SQ[ (u8)((w >> 24) & 0xff) ];
181 u8 sqw1 = SQ[ (u8)((w >> 16) & 0xff) ];
182 u8 sqw2 = SQ[ (u8)((w >> 8) & 0xff) ];
183 u8 sqw3 = SQ[ (u8)((w) & 0xff) ];
184 r0 = ( ( MULx( sqw0 , 0x69) ) ^
185 ( sqw1 ) ^
186 ( sqw2 ) ^
187 ( (MULx( sqw3, 0x69)) ^ sqw3 )
188 );
189 r1 = ( ( ( MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
190 ( MULx(sqw1, 0x69) ) ^
191 ( sqw2 ) ^
192 ( sqw3 )
193 );
194 r2 = ( ( sqw0 ) ^
195 ( ( MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
196 ( MULx(sqw2, 0x69) ) ^
197 ( sqw3 )
198 );
199 r3 = ( ( sqw0 ) ^
200 ( sqw1 ) ^
201 ( ( MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
202 ( MULx( sqw3, 0x69) )
203 );
204 return ( ( ((u32)r0) << 24 ) | ( ((u32)r1) << 16 ) | ( ((u32)r2) << 8 ) |
205 ( ((u32)r3) ) );
206}
207
208/* Clocking LFSR in initialization mode.
209* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
210* Input F: a 32-bit word comes from output of FSM.
211* See section 3.4.4.
212*/
213
Harald Welte135af532019-07-12 18:26:35 +0800214static void ClockLFSRInitializationMode(u32 F)
Harald Welte867ca292019-07-12 18:21:39 +0800215{
216 u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
217 ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
218 ( LFSR_S2 ) ^
219 ( (LFSR_S11 >> 8) & 0x00ffffff ) ^
220 ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) ) ^
221 ( F )
222 );
223 LFSR_S0 = LFSR_S1;
224 LFSR_S1 = LFSR_S2;
225 LFSR_S2 = LFSR_S3;
226 LFSR_S3 = LFSR_S4;
227 LFSR_S4 = LFSR_S5;
228 LFSR_S5 = LFSR_S6;
229 LFSR_S6 = LFSR_S7;
230 LFSR_S7 = LFSR_S8;
231 LFSR_S8 = LFSR_S9;
232 LFSR_S9 = LFSR_S10;
233 LFSR_S10 = LFSR_S11;
234 LFSR_S11 = LFSR_S12;
235 LFSR_S12 = LFSR_S13;
236 LFSR_S13 = LFSR_S14;
237 LFSR_S14 = LFSR_S15;
238 LFSR_S15 = v;
239}
240
241/* Clocking LFSR in keystream mode.
242* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
243* See section 3.4.5.
244*/
245
Harald Welte135af532019-07-12 18:26:35 +0800246static void ClockLFSRKeyStreamMode()
Harald Welte867ca292019-07-12 18:21:39 +0800247{
248 u32 v = ( ( (LFSR_S0 << 8) & 0xffffff00 ) ^
249 ( MULalpha( (u8)((LFSR_S0>>24) & 0xff) ) ) ^
250 ( LFSR_S2 ) ^
251 ( (LFSR_S11 >> 8) & 0x00ffffff ) ^
252 ( DIValpha( (u8)( ( LFSR_S11) & 0xff ) ) )
253 );
254 LFSR_S0 = LFSR_S1;
255 LFSR_S1 = LFSR_S2;
256 LFSR_S2 = LFSR_S3;
257 LFSR_S3 = LFSR_S4;
258 LFSR_S4 = LFSR_S5;
259 LFSR_S5 = LFSR_S6;
260 LFSR_S6 = LFSR_S7;
261 LFSR_S7 = LFSR_S8;
262 LFSR_S8 = LFSR_S9;
263 LFSR_S9 = LFSR_S10;
264 LFSR_S10 = LFSR_S11;
265 LFSR_S11 = LFSR_S12;
266 LFSR_S12 = LFSR_S13;
267 LFSR_S13 = LFSR_S14;
268 LFSR_S14 = LFSR_S15;
269 LFSR_S15 = v;
270}
271
272/* Clocking FSM.
273* Produces a 32-bit word F.
274* Updates FSM registers R1, R2, R3.
275* See Section 3.4.6.
276*/
277
Harald Welte135af532019-07-12 18:26:35 +0800278static u32 ClockFSM()
Harald Welte867ca292019-07-12 18:21:39 +0800279{
280 u32 F = ( ( LFSR_S15 + FSM_R1 ) & 0xffffffff ) ^ FSM_R2 ;
281 u32 r = ( FSM_R2 + ( FSM_R3 ^ LFSR_S5 ) ) & 0xffffffff ;
282 FSM_R3 = S2(FSM_R2);
283 FSM_R2 = S1(FSM_R1);
284 FSM_R1 = r;
285 return F;
286}
287
288/* Initialization.
289* Input k[4]: Four 32-bit words making up 128-bit key.
290* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
291* Output: All the LFSRs and FSM are initialized for key generation.
292* See Section 4.1.
293*/
294
295void snow_3g_initialize(u32 k[4], u32 IV[4])
296{
297 u8 i=0;
298 u32 F = 0x0;
299 LFSR_S15 = k[3] ^ IV[0];
300 LFSR_S14 = k[2];
301 LFSR_S13 = k[1];
302 LFSR_S12 = k[0] ^ IV[1];
303 LFSR_S11 = k[3] ^ 0xffffffff;
304 LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
305 LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
306 LFSR_S8 = k[0] ^ 0xffffffff;
307 LFSR_S7 = k[3];
308 LFSR_S6 = k[2];
309 LFSR_S5 = k[1];
310 LFSR_S4 = k[0];
311 LFSR_S3 = k[3] ^ 0xffffffff;
312 LFSR_S2 = k[2] ^ 0xffffffff;
313 LFSR_S1 = k[1] ^ 0xffffffff;
314 LFSR_S0 = k[0] ^ 0xffffffff;
315 FSM_R1 = 0x0;
316 FSM_R2 = 0x0;
317 FSM_R3 = 0x0;
318 for(i=0;i<32;i++)
319 {
320 F = ClockFSM();
321 ClockLFSRInitializationMode(F);
322 }
323}
324
325/* Generation of Keystream.
326* input n: number of 32-bit words of keystream.
327* input z: space for the generated keystream, assumes
328* memory is allocated already.
329* output: generated keystream which is filled in z
330* See section 4.2.
331*/
332
333void snow_3g_generate_key_stream(u32 n, u32 *ks)
334{
335 u32 t = 0;
336 u32 F = 0x0;
337 ClockFSM(); /* Clock FSM once. Discard the output. */
338 ClockLFSRKeyStreamMode(); /* Clock LFSR in keystream mode once. */
339 for ( t=0; t<n; t++)
340 {
341 F = ClockFSM(); /* STEP 1 */
342 ks[t] = F ^ LFSR_S0; /* STEP 2 */
343 /* Note that ks[t] corresponds to z_{t+1} in section 4.2
344 */
345 ClockLFSRKeyStreamMode(); /* STEP 3 */
346 }
347}
348
349/*-----------------------------------------------------------------------
350* end of SNOW_3G.c
351*-----------------------------------------------------------------------*/
352
353/*---------------------------------------------------------
354* f8.c
355*---------------------------------------------------------*/
356
357/*
358#include "f8.h"
359#include <stdio.h>
360#include <stdlib.h>
361#include <string.h>
362*/
363
364/* f8.
365* Input key: 128 bit Confidentiality Key.
366* Input count:32-bit Count, Frame dependent input.
367* Input bearer: 5-bit Bearer identity (in the LSB side).
368* Input dir:1 bit, direction of transmission.
369* Input data: length number of bits, input bit stream.
370* Input length: 32 bit Length, i.e., the number of bits to be encrypted or
371* decrypted.
372* Output data: Output bit stream. Assumes data is suitably memory
373* allocated.
374* Encrypts/decrypts blocks of data between 1 and 2^32 bits in length as
375* defined in Section 3.
376*/
377
378void snow_3g_f8(u8 *key, u32 count, u32 bearer, u32 dir, u8 *data, u32 length)
379{
380 u32 K[4],IV[4];
381 int n = ( length + 31 ) / 32;
382 int i=0;
383 int lastbits = (8-(length%8)) % 8;
Harald Welte4a2bfcb2019-07-12 18:27:08 +0800384 u32 KS[n];
Harald Welte867ca292019-07-12 18:21:39 +0800385
386 /*Initialisation*/
387 /* Load the confidentiality key for SNOW 3G initialization as in section
388 3.4. */
389 for (i=0; i<4; i++)
390 K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16)
391 ^ (key[4*i+2] << 8) ^ (key[4*i+3]);
392
393 /* Prepare the initialization vector (IV) for SNOW 3G initialization as in
394 section 3.4. */
395 IV[3] = count;
396 IV[2] = (bearer << 27) | ((dir & 0x1) << 26);
397 IV[1] = IV[3];
398 IV[0] = IV[2];
399
400 /* Run SNOW 3G algorithm to generate sequence of key stream bits KS*/
401 snow_3g_initialize(K,IV);
Harald Welte867ca292019-07-12 18:21:39 +0800402 snow_3g_generate_key_stream(n,(u32*)KS);
403
404 /* Exclusive-OR the input data with keystream to generate the output bit
405 stream */
406 for (i=0; i<n; i++)
407 {
408 data[4*i+0] ^= (u8) (KS[i] >> 24) & 0xff;
409 data[4*i+1] ^= (u8) (KS[i] >> 16) & 0xff;
410 data[4*i+2] ^= (u8) (KS[i] >> 8) & 0xff;
411 data[4*i+3] ^= (u8) (KS[i] ) & 0xff;
412 }
413
Harald Welte867ca292019-07-12 18:21:39 +0800414 /* zero last bits of data in case its length is not byte-aligned
415 this is an addition to the C reference code, which did not handle it */
416 if (lastbits)
417 data[length/8] &= 256 - (1<<lastbits);
418}
419/* End of f8.c */
420
421/*---------------------------------------------------------
422 * f9.c
423 *---------------------------------------------------------*/
424
425/* MUL64x.
426 * Input V: a 64-bit input.
427 * Input c: a 64-bit input.
428 * Output : a 64-bit output.
429 * A 64-bit memory is allocated which is to be freed by the calling
430 * function.
431 * See section 4.3.2 for details.
432 */
Harald Welte135af532019-07-12 18:26:35 +0800433static u64 MUL64x(u64 V, u64 c)
Harald Welte867ca292019-07-12 18:21:39 +0800434{
435 if ( V & 0x8000000000000000 )
436 return (V << 1) ^ c;
437 else
438 return V << 1;
439}
440
441/* MUL64xPOW.
442 * Input V: a 64-bit input.
443 * Input i: a positive integer.
444 * Input c: a 64-bit input.
445 * Output : a 64-bit output.
446 * A 64-bit memory is allocated which is to be freed by the calling function.
447 * See section 4.3.3 for details.
448 */
Harald Welte135af532019-07-12 18:26:35 +0800449static u64 MUL64xPOW(u64 V, u8 i, u64 c)
Harald Welte867ca292019-07-12 18:21:39 +0800450{
451 if ( i == 0)
452 return V;
453 else
454 return MUL64x( MUL64xPOW(V,i-1,c) , c);
455}
456
457/* MUL64.
458 * Input V: a 64-bit input.
459 * Input P: a 64-bit input.
460 * Input c: a 64-bit input.
461 * Output : a 64-bit output.
462 * A 64-bit memory is allocated which is to be freed by the calling
463 * function.
464 * See section 4.3.4 for details.
465 */
Harald Welte135af532019-07-12 18:26:35 +0800466static u64 MUL64(u64 V, u64 P, u64 c)
Harald Welte867ca292019-07-12 18:21:39 +0800467{
468 u64 result = 0;
469 int i = 0;
470
471 for ( i=0; i<64; i++)
472 {
473 if( ( P>>i ) & 0x1 )
474 result ^= MUL64xPOW(V,i,c);
475 }
476 return result;
477}
478
479/* mask8bit.
480 * Input n: an integer in 1-7.
481 * Output : an 8 bit mask.
482 * Prepares an 8 bit mask with required number of 1 bits on the MSB side.
483 */
Harald Welte135af532019-07-12 18:26:35 +0800484static u8 mask8bit(int n)
Harald Welte867ca292019-07-12 18:21:39 +0800485{
486 return 0xFF ^ ((1<<(8-n)) - 1);
487}
488
489/* f9.
490 * Input key: 128 bit Integrity Key.
491 * Input count:32-bit Count, Frame dependent input.
492 * Input fresh: 32-bit Random number.
493 * Input dir:1 bit, direction of transmission (in the LSB).
494 * Input data: length number of bits, input bit stream.
495 * Input length: 64 bit Length, i.e., the number of bits to be MAC'd.
496 * Output : 32 bit block used as MAC
497 * Generates 32-bit MAC using UIA2 algorithm as defined in Section 4.
498 */
499void snow_3g_f9(u8* key, u32 count, u32 fresh, u32 dir, u8 *data, u64 length,
500 u8 *out)
501{
502 u32 K[4],IV[4], z[5];
503 u32 i=0, D;
504 u64 EVAL;
505 u64 V;
506 u64 P;
507 u64 Q;
508 u64 c;
509
510 u64 M_D_2;
511 int rem_bits = 0;
512
513 /* Load the Integrity Key for SNOW3G initialization as in section 4.4. */
514 for (i=0; i<4; i++)
515 {
516 K[3-i] = (key[4*i] << 24) ^ (key[4*i+1] << 16) ^
517 (key[4*i+2] << 8) ^ (key[4*i+3]);
518 }
519
520 /* Prepare the Initialization Vector (IV) for SNOW3G initialization as
521 in section 4.4. */
522 IV[3] = count;
523 IV[2] = fresh;
524 IV[1] = count ^ ( dir << 31 ) ;
525 IV[0] = fresh ^ (dir << 15);
526
527 z[0] = z[1] = z[2] = z[3] = z[4] = 0;
528
529 /* Run SNOW 3G to produce 5 keystream words z_1, z_2, z_3, z_4 and z_5. */
530 snow_3g_initialize(K, IV);
531 snow_3g_generate_key_stream(5, z);
532
533 P = (u64)z[0] << 32 | (u64)z[1];
534 Q = (u64)z[2] << 32 | (u64)z[3];
535
536 /* Calculation */
537 if ((length % 64) == 0)
538 D = (length>>6) + 1;
539 else
540 D = (length>>6) + 2;
541 EVAL = 0;
542 c = 0x1b;
543
544 /* for 0 <= i <= D-3 */
545 for (i=0; i<D-2; i++)
546 {
547 V = EVAL ^ ( (u64)data[8*i ]<<56 | (u64)data[8*i+1]<<48 |
548 (u64)data[8*i+2]<<40 | (u64)data[8*i+3]<<32 |
549 (u64)data[8*i+4]<<24 | (u64)data[8*i+5]<<16 |
550 (u64)data[8*i+6]<< 8 | (u64)data[8*i+7] ) ;
551 EVAL = MUL64(V,P,c);
552 }
553
554 /* for D-2 */
555 rem_bits = length % 64;
556 if (rem_bits == 0)
557 rem_bits = 64;
558
559 M_D_2 = 0;
560 i = 0;
561 while (rem_bits > 7)
562 {
563 M_D_2 |= (u64)data[8*(D-2)+i] << (8*(7-i));
564 rem_bits -= 8;
565 i++;
566 }
567 if (rem_bits > 0)
568 M_D_2 |= (u64)(data[8*(D-2)+i] & mask8bit(rem_bits)) << (8*(7-i));
569
570 V = EVAL ^ M_D_2;
571 EVAL = MUL64(V,P,c);
572
573 /* for D-1 */
574 EVAL ^= length;
575
576 /* Multiply by Q */
577 EVAL = MUL64(EVAL,Q,c);
578
579 /* XOR with z_5: this is a modification to the reference C code,
580 which forgot to XOR z[5] */
581 for (i=0; i<4; i++)
582 /*
583 MAC_I[i] = (mac32 >> (8*(3-i))) & 0xff;
584 */
585 out[i] = ((EVAL >> (56-(i*8))) ^ (z[4] >> (24-(i*8)))) & 0xff;
586}
587
588/* End of f9.c */
589/*------------------------------------------------------------------------*/