blob: 8bddfb69f336b17ea43a96535a8bc83e5622fea8 [file] [log] [blame]
/*
* Copyright 2020 sysmocom - s.f.m.c. GmbH <info@sysmocom.de>
* Author: Pau Espin Pedrol <pespin@sysmocom.de>
*
* SPDX-License-Identifier: AGPL-3.0+
*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */
#include <map>
#include "trx_vty.h"
#include "Logger.h"
#include "Threads.h"
#include "Utils.h"
#include "IPCDevice.h"
extern "C" {
#include "osmo_signal.h"
#include <osmocom/core/application.h>
#include <osmocom/core/talloc.h>
#include <osmocom/core/select.h>
#include <osmocom/core/socket.h>
#include <osmocom/core/logging.h>
#include <osmocom/core/utils.h>
#include <osmocom/core/msgb.h>
#include <osmocom/core/select.h>
#include <osmocom/core/timer.h>
}
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#define SAMPLE_BUF_SZ (1 << 20)
using namespace std;
static int ipc_chan_sock_cb(struct osmo_fd *bfd, unsigned int flags);
IPCDevice::IPCDevice(size_t tx_sps, size_t rx_sps, InterfaceType iface, size_t chan_num, double lo_offset,
const std::vector<std::string> &tx_paths, const std::vector<std::string> &rx_paths)
: RadioDevice(tx_sps, rx_sps, iface, chan_num, lo_offset, tx_paths, rx_paths),
tmp_state(IPC_IF_MSG_GREETING_REQ), shm(NULL), started(false)
{
LOGC(DDEV, INFO) << "creating IPC device...";
//m_IPC_stream_rx.resize(chans);
//m_IPC_stream_tx.resize(chans);
rx_gains.resize(chans);
tx_gains.resize(chans);
rx_buffers.resize(chans);
/* Set up per-channel Rx timestamp based Ring buffers */
for (size_t i = 0; i < rx_buffers.size(); i++)
rx_buffers[i] = new smpl_buf(SAMPLE_BUF_SZ / sizeof(uint32_t));
memset(&sk_chan_state, 0, sizeof(sk_chan_state));
}
IPCDevice::~IPCDevice()
{
//unsigned int i;
LOGC(DDEV, INFO) << "Closing IPC device";
/* disable all channels */
for (size_t i = 0; i < rx_buffers.size(); i++)
delete rx_buffers[i];
for (unsigned int i = 0; i < ARRAY_SIZE(sk_chan_state); i++)
ipc_sock_close(&sk_chan_state[i]);
for (auto i : shm_io_rx_streams)
ipc_shm_close(i);
for (auto i : shm_io_tx_streams)
ipc_shm_close(i);
}
int IPCDevice::ipc_shm_connect(const char *shm_name)
{
int fd;
size_t shm_len;
int rc;
LOGP(DDEV, LOGL_NOTICE, "Opening shm path %s\n", shm_name);
if ((fd = shm_open(shm_name, O_CREAT | O_RDWR, S_IRUSR | S_IWUSR)) < 0) {
LOGP(DDEV, LOGL_ERROR, "shm_open %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_shm_open;
}
// Get size of the allocated memory
struct stat shm_stat;
if (fstat(fd, &shm_stat) < 0) {
LOGP(DDEV, LOGL_ERROR, "fstat %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_mmap;
}
shm_len = shm_stat.st_size;
LOGP(DDEV, LOGL_NOTICE, "mmaping shared memory fd %d (size=%zu)\n", fd, shm_len);
if ((shm = mmap(NULL, shm_len, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0)) == MAP_FAILED) {
LOGP(DDEV, LOGL_ERROR, "mmap %d: %s\n", errno, strerror(errno));
rc = -errno;
goto err_mmap;
}
LOGP(DDEV, LOGL_NOTICE, "mmap'ed shared memory at addr %p\n", shm);
LOGP(DDEV, LOGL_NOTICE, "%s\n", osmo_hexdump((const unsigned char *)shm, 80));
/* After a call to mmap(2) the file descriptor may be closed without affecting the memory mapping. */
close(fd);
return 0;
err_mmap:
shm_unlink(shm_name);
close(fd);
err_shm_open:
return rc;
}
static int ipc_sock_send(struct ipc_sock_state *state, struct msgb *msg);
static struct msgb *ipc_msgb_alloc(uint8_t msg_type)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
msg = msgb_alloc(sizeof(struct ipc_sk_if) + 1000, "ipc_sock_tx");
if (!msg)
return NULL;
msgb_put(msg, sizeof(struct ipc_sk_if) + 1000);
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->msg_type = msg_type;
return msg;
}
static int ipc_tx_greeting_req(struct ipc_sock_state *state, uint8_t req_version)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
LOGC(DDEV, NOTICE) << "Tx Greeting Req (" << IPC_IF_MSG_GREETING_REQ << ")\n";
msg = ipc_msgb_alloc(IPC_IF_MSG_GREETING_REQ);
if (!msg) {
LOGC(DDEV, INFO) << "ipc_msgb_alloc() returns NULL!";
return -ENOMEM;
}
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->u.greeting_req.req_version = req_version;
return ipc_sock_send(state, msg);
}
static int ipc_tx_info_req(struct ipc_sock_state *state)
{
struct msgb *msg;
//struct ipc_sk_if *ipc_prim;
LOGC(DDEV, NOTICE) << "Tx INFO Req\n";
msg = ipc_msgb_alloc(IPC_IF_MSG_INFO_REQ);
if (!msg)
return -ENOMEM;
//ipc_prim = (struct ipc_sk_if *) msg->data;
return ipc_sock_send(state, msg);
}
int IPCDevice::ipc_tx_open_req(struct ipc_sock_state *state, uint32_t num_chans, uint32_t ref)
{
struct msgb *msg;
struct ipc_sk_if *ipc_prim;
struct ipc_sk_if_open_req_chan *chan_info;
LOGC(DDEV, NOTICE) << "Tx Open Req\n";
msg = ipc_msgb_alloc(IPC_IF_MSG_OPEN_REQ);
if (!msg) {
return -ENOMEM;
}
ipc_prim = (struct ipc_sk_if *)msg->data;
ipc_prim->u.open_req.num_chans = num_chans;
/* FIXME: pass fractional freq */
ipc_prim->u.open_req.rx_sample_freq_num = rx_sps;
ipc_prim->u.open_req.rx_sample_freq_den = 1;
ipc_prim->u.open_req.tx_sample_freq_num = tx_sps;
ipc_prim->u.open_req.tx_sample_freq_den = 1;
switch (ref) {
case ReferenceType::REF_EXTERNAL:
ipc_prim->u.open_req.clockref = FEATURE_MASK_CLOCKREF_EXTERNAL;
break;
case ReferenceType::REF_INTERNAL:
case ReferenceType::REF_GPS:
ipc_prim->u.open_req.clockref = FEATURE_MASK_CLOCKREF_INTERNAL;
break;
}
/* FIXME: clock ref part of config, not open */
ipc_prim->u.open_req.clockref = FEATURE_MASK_CLOCKREF_EXTERNAL;
for (unsigned int i = 0; i < num_chans; i++) {
chan_info = &ipc_prim->u.open_req.chan_info[i];
OSMO_STRLCPY_ARRAY(chan_info->rx_path, rx_paths[i].c_str());
OSMO_STRLCPY_ARRAY(chan_info->tx_path, tx_paths[i].c_str());
}
return ipc_sock_send(state, msg);
}
static void ipc_sock_timeout(void *_priv)
{
LOGC(DDEV, INFO) << "UNIX SOCKET TIMEOUT!";
exit(1);
}
int IPCDevice::ipc_rx_greeting_cnf(const struct ipc_sk_if_greeting *greeting_cnf)
{
if (greeting_cnf->req_version == IPC_SOCK_API_VERSION) {
LOGC(DDEV, NOTICE) << "Rx Greeting CNF: correct sock API version" << greeting_cnf->req_version;
tmp_state = IPC_IF_MSG_GREETING_CNF;
} else {
LOGC(DDEV, ERROR) << "Wrong IPC SOCK API VERSION RECEIVED!" << greeting_cnf->req_version;
exit(1);
}
return 0;
}
int IPCDevice::ipc_rx_info_cnf(const struct ipc_sk_if_info_cnf *info_cnf)
{
current_info_cnf = *info_cnf;
unsigned int i;
if (info_cnf->max_num_chans < chans)
return -1;
/* Here:
* verify info_cnf->max_num_chans >= requested chans
* verify supports setting reflock as asked by user looking in info_cnf->feature_mask
* cache locally min/max tx/rxGain values from info_cnf
* do whatever validations or print info_cnf->dev_desc
* cache rx/tx paths per channel, and make sure it matches the one the user wants to set
*/
LOGC(DDEV, NOTICE) << "Rx Info CNF:"
<< " name=" << info_cnf->dev_desc << std::endl
<< " max_num_chans=" << info_cnf->max_num_chans << " feature_mask=" << info_cnf->feature_mask
<< " min_rx_gain=" << info_cnf->min_rx_gain << " max_rx_gain=" << info_cnf->max_rx_gain
<< " min_tx_gain=" << info_cnf->min_tx_gain << " max_tx_gain=" << info_cnf->max_tx_gain;
for (i = 0; i < info_cnf->max_num_chans; i++) {
int j = 0;
bool rx_found = false, tx_found = false;
while (strcmp(info_cnf->chan_info[i].rx_path[j], "") != 0) {
LOGC(DDEV, NOTICE)
<< "chan " << i << ": RxPath[" << j << "]: " << info_cnf->chan_info[i].rx_path[j];
if (rx_paths.size() < (i + 1) ||
strcmp(rx_paths[i].c_str(), info_cnf->chan_info[i].rx_path[j]) == 0) {
rx_found = true;
break;
}
j++;
}
j = 0;
while (strcmp(info_cnf->chan_info[i].tx_path[j], "") != 0) {
LOGC(DDEV, NOTICE)
<< "chan " << i << ": TxPath[" << j << "]: " << info_cnf->chan_info[i].tx_path[j];
if (tx_paths.size() < (i + 1) ||
strcmp(tx_paths[i].c_str(), info_cnf->chan_info[i].tx_path[j]) == 0) {
tx_found = true;
break;
}
j++;
}
if (!rx_found) {
LOGC(DDEV, ERROR) << "rx antenna not found: " << rx_paths[i];
exit(0);
}
if (!tx_found) {
LOGC(DDEV, ERROR) << "tx antenna not found: " << rx_paths[i];
exit(0);
}
}
tmp_state = IPC_IF_MSG_INFO_CNF;
return 0;
}
int IPCDevice::ipc_rx_open_cnf(const struct ipc_sk_if_open_cnf *open_cnf)
{
unsigned int i;
current_open_cnf = *open_cnf;
LOGC(DDEV, NOTICE)
<< "Rx Open CNF:"
<< " return_code=" << (unsigned int)open_cnf->return_code << " shm_name=" << open_cnf->shm_name;
LOGC(DDEV, NOTICE) << "Rx Open CNF:"
<< " ipc device path delay: " << (unsigned int)open_cnf->path_delay;
for (i = 0; i < chans; i++) {
int rc;
LOGC(DDEV, NOTICE) << "chan " << i << ": sk_path=" << open_cnf->chan_info[i].chan_ipc_sk_path;
/* FIXME: current limit 8 chans, make dynamic */
if (i < 8) {
struct ipc_sock_state *state = &sk_chan_state[i];
memset(state, 0x00, sizeof(*state));
INIT_LLIST_HEAD(&state->upqueue);
rc = osmo_sock_unix_init_ofd(&state->conn_bfd, SOCK_SEQPACKET, 0,
open_cnf->chan_info[i].chan_ipc_sk_path, OSMO_SOCK_F_CONNECT);
if (rc < 0) {
LOGC(DDEV, ERROR) << "Failed to connect to the BTS ("
<< open_cnf->chan_info[i].chan_ipc_sk_path << "). "
<< "Retrying...\n";
osmo_timer_setup(&state->timer, ipc_sock_timeout, NULL);
osmo_timer_schedule(&state->timer, 5, 0);
return -1;
}
state->conn_bfd.cb = ipc_chan_sock_cb;
state->conn_bfd.data = this;
state->conn_bfd.priv_nr = i;
}
}
OSMO_STRLCPY_ARRAY(shm_name, open_cnf->shm_name);
if (ipc_shm_connect(shm_name) < 0)
return -1;
shm_dec = ipc_shm_decode_region(NULL, (ipc_shm_raw_region *)shm);
LOGC(DDEV, NOTICE) << "shm: num_chans=" << shm_dec->num_chans;
/* server inits both producers */
for (unsigned int i = 0; i < shm_dec->num_chans; i++) {
LOGC(DDEV, NOTICE)
<< "shm: chan" << i << "/dl: num_buffers=" << shm_dec->channels[0]->dl_stream->num_buffers;
LOGC(DDEV, NOTICE)
<< "shm: chan" << i << "/dl: buffer_size=" << shm_dec->channels[0]->dl_stream->buffer_size;
shm_io_rx_streams.push_back(ipc_shm_init_consumer(shm_dec->channels[i]->ul_stream));
shm_io_tx_streams.push_back(ipc_shm_init_consumer(shm_dec->channels[i]->dl_stream));
// shm_io_tx_streams.push_back(ipc_shm_init_producer(shm_dec->channels[i]->dl_stream));
}
tmp_state = IPC_IF_MSG_OPEN_CNF;
return 0;
}
int IPCDevice::ipc_rx(uint8_t msg_type, struct ipc_sk_if *ipc_prim)
{
int rc = 0;
switch (msg_type) {
case IPC_IF_MSG_GREETING_CNF:
rc = ipc_rx_greeting_cnf(&ipc_prim->u.greeting_cnf);
break;
case IPC_IF_MSG_INFO_CNF:
rc = ipc_rx_info_cnf(&ipc_prim->u.info_cnf);
break;
case IPC_IF_MSG_OPEN_CNF:
rc = ipc_rx_open_cnf(&ipc_prim->u.open_cnf);
break;
default:
LOGP(DDEV, LOGL_ERROR, "Received unknown IPC msg type %d\n", msg_type);
rc = -EINVAL;
}
return rc;
}
int IPCDevice::ipc_rx_chan_start_cnf(ipc_sk_chan_if_op_rc *ret, uint8_t chan_nr)
{
tmp_state = IPC_IF_MSG_START_CNF;
return 0;
}
int IPCDevice::ipc_rx_chan_stop_cnf(ipc_sk_chan_if_op_rc *ret, uint8_t chan_nr)
{
return 0;
}
int IPCDevice::ipc_rx_chan_setgain_cnf(ipc_sk_chan_if_gain *ret, uint8_t chan_nr)
{
ret->is_tx ? tx_gains[chan_nr] = ret->gain : rx_gains[chan_nr] = ret->gain;
return 0;
}
int IPCDevice::ipc_rx_chan_setfreq_cnf(ipc_sk_chan_if_freq_cnf *ret, uint8_t chan_nr)
{
return 0;
}
int IPCDevice::ipc_rx_chan_notify_underflow(ipc_sk_chan_if_notfiy *ret, uint8_t chan_nr)
{
m_ctr[chan_nr].tx_underruns += 1;
osmo_signal_dispatch(SS_DEVICE, S_DEVICE_COUNTER_CHANGE, &m_ctr[chan_nr]);
return 0;
}
int IPCDevice::ipc_rx_chan_notify_overflow(ipc_sk_chan_if_notfiy *ret, uint8_t chan_nr)
{
m_ctr[chan_nr].rx_overruns += 1;
osmo_signal_dispatch(SS_DEVICE, S_DEVICE_COUNTER_CHANGE, &m_ctr[chan_nr]);
return 0;
}
int IPCDevice::ipc_chan_rx(uint8_t msg_type, struct ipc_sk_chan_if *ipc_prim, uint8_t chan_nr)
{
int rc = 0;
switch (msg_type) {
case IPC_IF_MSG_START_CNF:
rc = ipc_rx_chan_start_cnf(&ipc_prim->u.start_cnf, chan_nr);
break;
case IPC_IF_MSG_STOP_CNF:
rc = ipc_rx_chan_stop_cnf(&ipc_prim->u.stop_cnf, chan_nr);
break;
case IPC_IF_MSG_SETGAIN_CNF:
rc = ipc_rx_chan_setgain_cnf(&ipc_prim->u.set_gain_cnf, chan_nr);
break;
case IPC_IF_MSG_SETFREQ_CNF:
rc = ipc_rx_chan_setfreq_cnf(&ipc_prim->u.set_freq_cnf, chan_nr);
break;
case IPC_IF_NOTIFY_UNDERFLOW:
rc = ipc_rx_chan_notify_underflow(&ipc_prim->u.notify, chan_nr);
break;
case IPC_IF_NOTIFY_OVERFLOW:
rc = ipc_rx_chan_notify_overflow(&ipc_prim->u.notify, chan_nr);
break;
default:
LOGP(DMAIN, LOGL_ERROR, "Received unknown IPC msg type %d\n", msg_type);
rc = -EINVAL;
}
return rc;
}
static int ipc_sock_send(struct ipc_sock_state *state, struct msgb *msg)
{
struct osmo_fd *conn_bfd;
//struct ipc_sk_if *ipc_prim = (struct ipc_sk_if *) msg->data;
if (!state) {
LOGP(DMAIN, LOGL_INFO,
"IPC socket not created, "
"dropping message\n");
msgb_free(msg);
return -EINVAL;
}
conn_bfd = &state->conn_bfd;
if (conn_bfd->fd <= 0) {
LOGP(DMAIN, LOGL_NOTICE,
"IPC socket not connected, "
"dropping message\n");
msgb_free(msg);
return -EIO;
}
msgb_enqueue(&state->upqueue, msg);
conn_bfd->when |= BSC_FD_WRITE;
return 0;
}
void IPCDevice::ipc_sock_close(struct ipc_sock_state *state)
{
if (state == 0)
return;
struct osmo_fd *bfd = &state->conn_bfd;
if (bfd->fd <= 0)
return;
LOGP(DDEV, LOGL_NOTICE, "IPC socket has LOST connection\n");
close(bfd->fd);
bfd->fd = -1;
osmo_fd_unregister(bfd);
/* flush the queue */
while (!llist_empty(&state->upqueue)) {
struct msgb *msg = msgb_dequeue(&state->upqueue);
msgb_free(msg);
}
}
int IPCDevice::ipc_sock_read(struct osmo_fd *bfd)
{
struct ipc_sk_if *ipc_prim;
struct msgb *msg;
int rc;
msg = msgb_alloc(sizeof(*ipc_prim) + 1000, "ipc_sock_rx");
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_if *)msg->tail;
rc = recv(bfd->fd, msg->tail, msgb_tailroom(msg), 0);
if (rc == 0)
goto close;
if (rc < 0) {
if (errno == EAGAIN) {
msgb_free(msg);
return 0;
}
goto close;
}
if ((size_t)rc < sizeof(*ipc_prim)) {
LOGP(DDEV, LOGL_ERROR,
"Received %d bytes on Unix Socket, but primitive size "
"is %zu, discarding\n",
rc, sizeof(*ipc_prim));
msgb_free(msg);
return 0;
}
rc = ipc_rx(ipc_prim->msg_type, ipc_prim);
/* as we always synchronously process the message in IPC_rx() and
* its callbacks, we can free the message here. */
msgb_free(msg);
return rc;
close:
msgb_free(msg);
ipc_sock_close(&sk_state);
return -1;
}
int IPCDevice::ipc_chan_sock_read(struct osmo_fd *bfd)
{
struct ipc_sk_chan_if *ipc_prim;
struct msgb *msg;
int rc;
msg = msgb_alloc(sizeof(*ipc_prim) + 1000, "ipc_chan_sock_rx");
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->tail;
rc = recv(bfd->fd, msg->tail, msgb_tailroom(msg), 0);
if (rc == 0)
goto close;
if (rc < 0) {
if (errno == EAGAIN) {
msgb_free(msg);
return 0;
}
goto close;
}
if ((size_t)rc < sizeof(*ipc_prim)) {
LOGP(DDEV, LOGL_ERROR,
"Received %d bytes on Unix Socket, but primitive size "
"is %zu, discarding\n",
rc, sizeof(*ipc_prim));
msgb_free(msg);
return 0;
}
rc = ipc_chan_rx(ipc_prim->msg_type, ipc_prim, bfd->priv_nr);
/* as we always synchronously process the message in IPC_rx() and
* its callbacks, we can free the message here. */
msgb_free(msg);
return rc;
close:
msgb_free(msg);
ipc_sock_close(&sk_chan_state[bfd->priv_nr]);
return -1;
}
int IPCDevice::ipc_sock_write(struct osmo_fd *bfd)
{
int rc;
while (!llist_empty(&sk_state.upqueue)) {
struct msgb *msg, *msg2;
struct ipc_sk_if *ipc_prim;
/* peek at the beginning of the queue */
msg = llist_entry(sk_state.upqueue.next, struct msgb, list);
ipc_prim = (struct ipc_sk_if *)msg->data;
bfd->when &= ~BSC_FD_WRITE;
/* bug hunter 8-): maybe someone forgot msgb_put(...) ? */
if (!msgb_length(msg)) {
LOGP(DDEV, LOGL_ERROR,
"message type (%d) with ZERO "
"bytes!\n",
ipc_prim->msg_type);
goto dontsend;
}
/* try to send it over the socket */
rc = write(bfd->fd, msgb_data(msg), msgb_length(msg));
if (rc == 0)
goto close;
if (rc < 0) {
if (errno == EAGAIN) {
bfd->when |= BSC_FD_WRITE;
break;
}
goto close;
}
dontsend:
/* _after_ we send it, we can deueue */
msg2 = msgb_dequeue(&sk_state.upqueue);
assert(msg == msg2);
msgb_free(msg);
}
return 0;
close:
ipc_sock_close(&sk_state);
return -1;
}
int IPCDevice::ipc_chan_sock_write(struct osmo_fd *bfd)
{
int rc;
while (!llist_empty(&sk_chan_state[bfd->priv_nr].upqueue)) {
struct msgb *msg, *msg2;
struct ipc_sk_chan_if *ipc_prim;
/* peek at the beginning of the queue */
msg = llist_entry(sk_chan_state[bfd->priv_nr].upqueue.next, struct msgb, list);
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
bfd->when &= ~BSC_FD_WRITE;
/* bug hunter 8-): maybe someone forgot msgb_put(...) ? */
if (!msgb_length(msg)) {
LOGP(DDEV, LOGL_ERROR,
"message type (%d) with ZERO "
"bytes!\n",
ipc_prim->msg_type);
goto dontsend;
}
/* try to send it over the socket */
rc = write(bfd->fd, msgb_data(msg), msgb_length(msg));
if (rc == 0)
goto close;
if (rc < 0) {
if (errno == EAGAIN) {
bfd->when |= BSC_FD_WRITE;
break;
}
goto close;
}
dontsend:
/* _after_ we send it, we can deueue */
msg2 = msgb_dequeue(&sk_chan_state[bfd->priv_nr].upqueue);
assert(msg == msg2);
msgb_free(msg);
}
return 0;
close:
ipc_sock_close(&sk_chan_state[bfd->priv_nr]);
return -1;
}
static int ipc_sock_cb(struct osmo_fd *bfd, unsigned int flags)
{
IPCDevice *device = static_cast<IPCDevice *>(bfd->data);
int rc = 0;
if (flags & BSC_FD_READ)
rc = device->ipc_sock_read(bfd);
if (rc < 0)
return rc;
if (flags & BSC_FD_WRITE)
rc = device->ipc_sock_write(bfd);
return rc;
}
static int ipc_chan_sock_cb(struct osmo_fd *bfd, unsigned int flags)
{
IPCDevice *device = static_cast<IPCDevice *>(bfd->data);
int rc = 0;
if (flags & BSC_FD_READ)
rc = device->ipc_chan_sock_read(bfd);
if (rc < 0)
return rc;
if (flags & BSC_FD_WRITE)
rc = device->ipc_chan_sock_write(bfd);
return rc;
}
int IPCDevice::open(const std::string &args, int ref, bool swap_channels)
{
std::string k,v;
std::string::size_type keyend;
int rc;
if ((keyend = args.find('=')) != std::string::npos) {
k = args.substr(0, keyend++);
v = args.substr(keyend);
}
if(k != "ipc_msock" || !v.length()) {
LOGC(DDEV, ERROR) << "Invalid device args provided, expected \"dev-args ipc_msock=/path/to/socket\"\n";
return -1;
}
LOGC(DDEV, INFO) << "Opening IPC device" << v << "..";
memset(&sk_state, 0x00, sizeof(sk_state));
INIT_LLIST_HEAD(&sk_state.upqueue);
rc = osmo_sock_unix_init_ofd(&sk_state.conn_bfd, SOCK_SEQPACKET, 0, v.c_str(), OSMO_SOCK_F_CONNECT);
if (rc < 0) {
LOGC(DDEV, ERROR) << "Failed to connect to the BTS (" << v << "). "
<< "Retrying...\n";
osmo_timer_setup(&sk_state.timer, ipc_sock_timeout, NULL);
osmo_timer_schedule(&sk_state.timer, 5, 0);
return -1;
}
sk_state.conn_bfd.cb = ipc_sock_cb;
sk_state.conn_bfd.data = this;
ipc_tx_greeting_req(&sk_state, IPC_SOCK_API_VERSION);
/* Wait until confirmation is recieved */
while (tmp_state != IPC_IF_MSG_GREETING_CNF)
osmo_select_main(0);
ipc_tx_info_req(&sk_state);
/* Wait until confirmation is recieved */
while (tmp_state != IPC_IF_MSG_INFO_CNF)
osmo_select_main(0);
ipc_tx_open_req(&sk_state, chans, ref);
/* Wait until confirmation is recieved */
while (tmp_state != IPC_IF_MSG_OPEN_CNF)
osmo_select_main(0);
LOGC(DDEV, NOTICE) << "Device driver opened successfuly!";
/* configure antennas */
if (!set_antennas()) {
LOGC(DDEV, FATAL) << "IPC antenna setting failed";
goto out_close;
}
return iface == MULTI_ARFCN ? MULTI_ARFCN : NORMAL;
out_close:
LOGC(DDEV, FATAL) << "Error in IPC open, closing";
return -1;
}
bool IPCDevice::start()
{
LOGC(DDEV, INFO) << "starting IPC...";
if (started) {
LOGC(DDEV, ERR) << "Device already started";
return true;
}
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
msg = ipc_msgb_alloc(IPC_IF_MSG_START_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.start_req.dummy = 0;
ipc_sock_send(&sk_chan_state[0], msg);
while (tmp_state != IPC_IF_MSG_START_CNF)
osmo_select_main(0);
flush_recv(10);
started = true;
return true;
}
bool IPCDevice::stop()
{
//unsigned int i;
if (!started)
return true;
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
msg = ipc_msgb_alloc(IPC_IF_MSG_STOP_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.start_req.dummy = 0;
ipc_sock_send(&sk_chan_state[0], msg);
started = false;
return true;
}
/* do rx/tx calibration - depends on gain, freq and bw */
bool IPCDevice::do_calib(size_t chan)
{
LOGCHAN(chan, DDEV, INFO) << "Calibrating";
return true;
}
/* do rx/tx filter config - depends on bw only? */
bool IPCDevice::do_filters(size_t chan)
{
LOGCHAN(chan, DDEV, INFO) << "Setting filters";
return true;
}
double IPCDevice::maxTxGain()
{
//return dev_param_map.at(m_dev_type).max_tx_gain;
return current_info_cnf.max_tx_gain;
}
double IPCDevice::minTxGain()
{
return current_info_cnf.min_tx_gain;
}
double IPCDevice::maxRxGain()
{
return current_info_cnf.max_rx_gain;
}
double IPCDevice::minRxGain()
{
return current_info_cnf.min_rx_gain;
}
double IPCDevice::setTxGain(double dB, size_t chan)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
if (dB > maxTxGain())
dB = maxTxGain();
if (dB < minTxGain())
dB = minTxGain();
LOGCHAN(chan, DDEV, NOTICE) << "Setting TX gain to " << dB << " dB";
msg = ipc_msgb_alloc(IPC_IF_MSG_SETGAIN_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_gain_req.is_tx = 1;
ipc_prim->u.set_gain_req.gain = dB;
ipc_sock_send(&sk_chan_state[chan], msg);
tx_gains[chan] = dB;
return tx_gains[chan];
}
double IPCDevice::setRxGain(double dB, size_t chan)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
if (dB > maxRxGain())
dB = maxRxGain();
if (dB < minRxGain())
dB = minRxGain();
LOGCHAN(chan, DDEV, NOTICE) << "Setting RX gain to " << dB << " dB";
msg = ipc_msgb_alloc(IPC_IF_MSG_SETGAIN_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_gain_req.is_tx = 0;
ipc_prim->u.set_gain_req.gain = dB;
ipc_sock_send(&sk_chan_state[chan], msg);
rx_gains[chan] = dB;
return rx_gains[chan];
}
bool IPCDevice::flush_recv(size_t num_pkts)
{
std::vector<uint16_t> tmp(4096);
uint64_t tmps;
uint32_t read;
for (uint32_t j = 0; j < num_pkts; j++) {
for (unsigned int i = 0; i < chans; i++)
read = ipc_shm_read(shm_io_rx_streams[i], (uint16_t *)&tmp.front(), 4096 / 2, &tmps, 1);
}
ts_initial = tmps + read;
return ts_initial;
LOGC(DDEV, INFO) << "Initial timestamp " << ts_initial << std::endl;
return true;
}
bool IPCDevice::setRxAntenna(const std::string &ant, size_t chan)
{
return true;
}
std::string IPCDevice::getRxAntenna(size_t chan)
{
return "";
}
bool IPCDevice::setTxAntenna(const std::string &ant, size_t chan)
{
return true;
}
std::string IPCDevice::getTxAntenna(size_t chan)
{
return "";
}
bool IPCDevice::requiresRadioAlign()
{
return false;
}
GSM::Time IPCDevice::minLatency()
{
/* UNUSED */
return GSM::Time(0, 0);
}
/** Returns the starting write Timestamp*/
TIMESTAMP IPCDevice::initialWriteTimestamp(void)
{
return ts_initial;
}
/** Returns the starting read Timestamp*/
TIMESTAMP IPCDevice::initialReadTimestamp(void)
{
return ts_initial;
}
// NOTE: Assumes sequential reads
int IPCDevice::readSamples(std::vector<short *> &bufs, int len, bool *overrun, TIMESTAMP timestamp, bool *underrun)
{
int rc, num_smpls, expect_smpls;
ssize_t avail_smpls;
TIMESTAMP expect_timestamp;
unsigned int i;
if (bufs.size() != chans) {
LOGC(DDEV, ERROR) << "Invalid channel combination " << bufs.size();
return -1;
}
*overrun = false;
*underrun = false;
timestamp += current_open_cnf.path_delay;
/* Check that timestamp is valid */
rc = rx_buffers[0]->avail_smpls(timestamp);
if (rc < 0) {
LOGC(DDEV, ERROR) << rx_buffers[0]->str_code(rc);
LOGC(DDEV, ERROR) << rx_buffers[0]->str_status(timestamp);
return 0;
}
for (i = 0; i < chans; i++) {
/* Receive samples from HW until we have enough */
while ((avail_smpls = rx_buffers[i]->avail_smpls(timestamp)) < len) {
uint64_t recv_timestamp = 0;
thread_enable_cancel(false);
num_smpls = ipc_shm_read(shm_io_rx_streams[i], (uint16_t *)bufs[i], len - avail_smpls,
&recv_timestamp, 1);
expect_timestamp = timestamp + avail_smpls;
thread_enable_cancel(true);
LOGCHAN(i, DDEV, DEBUG)
"Received timestamp = " << (TIMESTAMP)recv_timestamp << " (" << num_smpls << ")";
expect_smpls = len - avail_smpls;
// if (expect_smpls != num_smpls)
// LOGCHAN(i, DDEV, NOTICE)
// << "Unexpected recv buffer len: expect " << expect_smpls << " got " << num_smpls
// << ", diff=" << expect_smpls - num_smpls;
//expect_timestamp = timestamp + avail_smpls;
if (expect_timestamp != (TIMESTAMP)recv_timestamp)
LOGCHAN(i, DDEV, ERROR) << "Unexpected recv buffer timestamp: expect "
<< expect_timestamp << " got " << recv_timestamp << ", diff="
<< ((uint64_t)recv_timestamp > expect_timestamp ?
(uint64_t)recv_timestamp - expect_timestamp :
expect_timestamp - recv_timestamp);
rc = rx_buffers[i]->write(bufs[i], num_smpls, (TIMESTAMP)recv_timestamp);
if (rc < 0) {
LOGCHAN(i, DDEV, ERROR) << rx_buffers[i]->str_code(rc);
LOGCHAN(i, DDEV, ERROR) << rx_buffers[i]->str_status(timestamp);
if (rc != smpl_buf::ERROR_OVERFLOW)
return 0;
}
}
}
/* We have enough samples */
for (size_t i = 0; i < rx_buffers.size(); i++) {
rc = rx_buffers[i]->read(bufs[i], len, timestamp);
if ((rc < 0) || (rc != len)) {
LOGCHAN(i, DDEV, ERROR) << rx_buffers[i]->str_code(rc) << ". "
<< rx_buffers[i]->str_status(timestamp) << ", (len=" << len << ")";
return 0;
}
}
return len;
}
int IPCDevice::writeSamples(std::vector<short *> &bufs, int len, bool *underrun, unsigned long long timestamp)
{
int rc = 0;
unsigned int i;
if (bufs.size() != chans) {
LOGC(DDEV, ERROR) << "Invalid channel combination " << bufs.size();
return -1;
}
*underrun = false;
for (i = 0; i < chans; i++) {
LOGCHAN(i, DDEV, DEBUG) << "send buffer of len " << len << " timestamp " << std::hex << timestamp;
// thread_enable_cancel(false);
rc = ipc_shm_enqueue(shm_io_tx_streams[i], timestamp, len, (uint16_t *)bufs[i]);
// rc = LMS_SendStream(&m_lms_stream_tx[i], bufs[i], len, &tx_metadata, 100);
// update_stream_stats_tx(i, underrun);
// thread_enable_cancel(true);
if (rc != len) {
LOGCHAN(i, DDEV, ERROR) << "LMS: Device Tx timed out (" << rc << " vs exp " << len << ").";
return -1;
}
}
return rc;
}
bool IPCDevice::updateAlignment(TIMESTAMP timestamp)
{
return true;
}
bool IPCDevice::setTxFreq(double wFreq, size_t chan)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
LOGCHAN(chan, DDEV, NOTICE) << "Setting Tx Freq to " << wFreq << " Hz";
msg = ipc_msgb_alloc(IPC_IF_MSG_SETFREQ_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_freq_req.is_tx = 1;
ipc_prim->u.set_freq_req.freq = wFreq;
return ipc_sock_send(&sk_chan_state[chan], msg) < 0 ? false : true;
}
bool IPCDevice::setRxFreq(double wFreq, size_t chan)
{
struct msgb *msg;
struct ipc_sk_chan_if *ipc_prim;
LOGCHAN(chan, DDEV, NOTICE) << "Setting Rx Freq to " << wFreq << " Hz";
msg = ipc_msgb_alloc(IPC_IF_MSG_SETFREQ_REQ);
if (!msg)
return -ENOMEM;
ipc_prim = (struct ipc_sk_chan_if *)msg->data;
ipc_prim->u.set_freq_req.is_tx = 0;
ipc_prim->u.set_freq_req.freq = wFreq;
return ipc_sock_send(&sk_chan_state[chan], msg) < 0 ? false : true;
}
RadioDevice *RadioDevice::make(size_t tx_sps, size_t rx_sps, InterfaceType iface, size_t chans, double lo_offset,
const std::vector<std::string> &tx_paths, const std::vector<std::string> &rx_paths)
{
if (tx_sps != rx_sps) {
LOGC(DDEV, ERROR) << "IPC Requires tx_sps == rx_sps";
return NULL;
}
if (lo_offset != 0.0) {
LOGC(DDEV, ERROR) << "IPC doesn't support lo_offset";
return NULL;
}
return new IPCDevice(tx_sps, rx_sps, iface, chans, lo_offset, tx_paths, rx_paths);
}