blob: 71d49aa1beec40e32d26afc9cb86352f8d7eff7b [file] [log] [blame]
/*
* (C) 2022 by sysmocom s.f.m.c. GmbH <info@sysmocom.de>
* All Rights Reserved
*
* Author: Eric Wild <ewild@sysmocom.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "sigProcLib.h"
#include "signalVector.h"
#include <atomic>
#include <cassert>
#include <complex>
#include <iostream>
#include <future>
#include "ms.h"
#include "grgsm_vitac/grgsm_vitac.h"
#include "threadpool.h"
extern "C" {
#include "sch.h"
}
#ifdef LOG
#undef LOG
#endif
#if !defined(NODAMNLOG)
#define DBGLG(...) ms_trx::dummy_log()
#else
#define DBGLG(...) std::cerr
#endif
#if !defined(NODAMNLOG)
#define DBGLG2(...) ms_trx::dummy_log()
#else
#define DBGLG2(...) std::cerr
#endif
#define PRINT_Q_OVERFLOW
extern std::atomic<bool> g_exit_flag;
bool ms_trx::decode_sch(char *bits, bool update_global_clock)
{
int fn;
struct sch_info sch;
ubit_t info[GSM_SCH_INFO_LEN];
sbit_t data[GSM_SCH_CODED_LEN];
memcpy(&data[0], &bits[3], 39);
memcpy(&data[39], &bits[106], 39);
if (!gsm_sch_decode(info, data)) {
gsm_sch_parse(info, &sch);
if (update_global_clock) {
DBGLG() << "SCH : Decoded values" << std::endl;
DBGLG() << " BSIC: " << sch.bsic << std::endl;
DBGLG() << " TSC: " << (sch.bsic & 0x7) << std::endl;
DBGLG() << " T1 : " << sch.t1 << std::endl;
DBGLG() << " T2 : " << sch.t2 << std::endl;
DBGLG() << " T3p : " << sch.t3p << std::endl;
DBGLG() << " FN : " << gsm_sch_to_fn(&sch) << std::endl;
}
fn = gsm_sch_to_fn(&sch);
if (fn < 0) { // how? wh?
DBGLG() << "SCH : Failed to convert FN " << std::endl;
return false;
}
if (update_global_clock) {
mBSIC = sch.bsic;
mTSC = sch.bsic & 0x7;
timekeeper.set(fn, 0);
}
return true;
}
return false;
}
void ms_trx::maybe_update_gain(one_burst &brst)
{
static_assert((sizeof(brst.burst) / sizeof(brst.burst[0])) == ONE_TS_BURST_LEN, "wtf, buffer size mismatch?");
const int avgburst_num = 8 * 20; // ~ 50*4.5ms = 90ms?
static_assert(avgburst_num * 577 > (50 * 1000), "can't update faster then blade wait time?");
const unsigned int rx_max_cutoff = (rxFullScale * 2) / 3;
static int gain_check = 0;
static float runmean = 0;
float sum = normed_abs_sum(&brst.burst[0], ONE_TS_BURST_LEN);
runmean = gain_check ? (runmean * (gain_check + 2) - 1 + sum) / (gain_check + 2) : sum;
if (gain_check == avgburst_num - 1) {
DBGLG2() << "\x1B[32m #RXG \033[0m" << cfg.rxgain << " " << runmean << " " << sum << std::endl;
auto gainoffset = runmean < (rxFullScale / 4 ? 4 : 2);
gainoffset = runmean < (rxFullScale / 2 ? 2 : 1);
float newgain = runmean < rx_max_cutoff ? cfg.rxgain + gainoffset : cfg.rxgain - gainoffset;
// FIXME: gian cutoff
if (newgain != cfg.rxgain && newgain <= 60) {
auto gain_fun = [this, newgain] { setRxGain(newgain); };
worker_thread.add_task(gain_fun);
}
runmean = 0;
}
gain_check = (gain_check + 1) % avgburst_num;
}
static char sch_demod_bits[148];
bool ms_trx::handle_sch_or_nb()
{
one_burst brst;
const auto current_gsm_time = timekeeper.gsmtime();
const auto is_sch = gsm_sch_check_ts(current_gsm_time.TN(), current_gsm_time.FN());
//either pass burst to upper layer for demod, OR pass demodded SCH to upper layer so we don't waste time processing it twice
brst.gsmts = current_gsm_time;
if (!is_sch) {
memcpy(brst.burst, burst_copy_buffer, sizeof(blade_sample_type) * ONE_TS_BURST_LEN);
} else {
handle_sch(false);
memcpy(brst.sch_bits, sch_demod_bits, sizeof(sch_demod_bits));
}
while (!g_exit_flag && upper_is_ready && !rxqueue.spsc_push(&brst))
;
if (!use_agc)
maybe_update_gain(brst);
return false;
}
static float sch_acq_buffer[SCH_LEN_SPS * 2];
bool ms_trx::handle_sch(bool is_first_sch_acq)
{
auto current_gsm_time = timekeeper.gsmtime();
const auto buf_len = is_first_sch_acq ? SCH_LEN_SPS : ONE_TS_BURST_LEN;
const auto which_in_buffer = is_first_sch_acq ? first_sch_buf : burst_copy_buffer;
memset((void *)&sch_acq_buffer[0], 0, sizeof(sch_acq_buffer));
if (use_va) {
const auto which_out_buffer = is_first_sch_acq ? sch_acq_buffer : &sch_acq_buffer[40 * 2];
const auto ss = reinterpret_cast<std::complex<float> *>(which_out_buffer);
std::complex<float> channel_imp_resp[CHAN_IMP_RESP_LENGTH * d_OSR];
int start;
convert_and_scale(which_out_buffer, which_in_buffer, buf_len * 2, 1.f / float(rxFullScale));
if (is_first_sch_acq) {
float max_corr = 0;
start = get_sch_buffer_chan_imp_resp(ss, &channel_imp_resp[0], buf_len, &max_corr);
} else {
start = get_sch_chan_imp_resp(ss, &channel_imp_resp[0]);
start = start < 39 ? start : 39;
start = start > -39 ? start : -39;
}
detect_burst_nb(&ss[start], &channel_imp_resp[0], 0, sch_demod_bits);
auto sch_decode_success = decode_sch(sch_demod_bits, is_first_sch_acq);
#if 0 // useful to debug offset shifts
auto burst = new signalVector(buf_len, 50);
const auto corr_type = is_first_sch_acq ? sch_detect_type::SCH_DETECT_BUFFER : sch_detect_type::SCH_DETECT_FULL;
struct estim_burst_params ebp;
// scale like uhd, +-2k -> +-32k
convert_and_scale(burst->begin(), which_in_buffer, buf_len * 2, SAMPLE_SCALE_FACTOR);
auto rv = detectSCHBurst(*burst, 4, 4, corr_type, &ebp);
int howmuchdelay = ebp.toa * 4;
std::cerr << "ooffs: " << howmuchdelay << " " << std::endl;
std::cerr << "voffs: " << start << " " << sch_decode_success << std::endl;
#endif
if (sch_decode_success) {
const auto ts_offset_symb = 4;
if (is_first_sch_acq) {
// update ts to first sample in sch buffer, to allow delay calc for current ts
first_sch_ts_start = first_sch_buf_rcv_ts + start - (ts_offset_symb * 4) - 1;
} else if (abs(start) > 1) {
// continuous sch tracking, only update if off too much
temp_ts_corr_offset += -start;
std::cerr << "offs: " << start << " " << temp_ts_corr_offset << std::endl;
}
return true;
} else {
DBGLG2() << "L SCH : \x1B[31m decode fail \033[0m @ toa:" << start << " "
<< current_gsm_time.FN() << ":" << current_gsm_time.TN() << std::endl;
}
} else {
const auto ts_offset_symb = 4;
auto burst = new signalVector(buf_len, 50);
const auto corr_type =
is_first_sch_acq ? sch_detect_type::SCH_DETECT_BUFFER : sch_detect_type::SCH_DETECT_FULL;
struct estim_burst_params ebp;
// scale like uhd, +-2k -> +-32k
convert_and_scale(burst->begin(), which_in_buffer, buf_len * 2, SAMPLE_SCALE_FACTOR);
auto rv = detectSCHBurst(*burst, 4, 4, corr_type, &ebp);
int howmuchdelay = ebp.toa * 4;
if (!rv) {
delete burst;
DBGLG() << "SCH : \x1B[31m detect fail \033[0m NOOOOOOOOOOOOOOOOOO toa:" << ebp.toa << " "
<< current_gsm_time.FN() << ":" << current_gsm_time.TN() << std::endl;
return false;
}
SoftVector *bits;
if (is_first_sch_acq) {
// can't be legit with a buf size spanning _at least_ one SCH but delay that implies partial sch burst
if (howmuchdelay < 0 || (buf_len - howmuchdelay) < ONE_TS_BURST_LEN) {
delete burst;
return false;
}
struct estim_burst_params ebp2;
// auto sch_chunk = new signalVector(ONE_TS_BURST_LEN, 50);
// auto sch_chunk_start = sch_chunk->begin();
// memcpy(sch_chunk_start, sch_buf_f.data() + howmuchdelay, sizeof(std::complex<float>) * ONE_TS_BURST_LEN);
auto delay = delayVector(burst, NULL, -howmuchdelay);
scaleVector(*delay, (complex)1.0 / ebp.amp);
auto rv2 = detectSCHBurst(*delay, 4, 4, sch_detect_type::SCH_DETECT_FULL, &ebp2);
DBGLG() << "FIRST SCH : " << (rv2 ? "yes " : " ") << "Timing offset " << ebp2.toa
<< " symbols" << std::endl;
bits = demodAnyBurst(*delay, SCH, 4, &ebp2);
delete delay;
} else {
bits = demodAnyBurst(*burst, SCH, 4, &ebp);
}
delete burst;
// clamp to +-1.5 because +-127 softbits scaled by 64 after -0.5 can be at most +-1.5
clamp_array(bits->begin(), 148, 1.5f);
float_to_sbit(&bits->begin()[0], (signed char *)&sch_demod_bits[0], 62, 148);
if (decode_sch((char *)sch_demod_bits, is_first_sch_acq)) {
auto current_gsm_time_updated = timekeeper.gsmtime();
if (is_first_sch_acq) {
// update ts to first sample in sch buffer, to allow delay calc for current ts
first_sch_ts_start = first_sch_buf_rcv_ts + howmuchdelay - (ts_offset_symb * 4);
} else {
// continuous sch tracking, only update if off too much
auto diff = [](float x, float y) { return x > y ? x - y : y - x; };
auto d = diff(ebp.toa, ts_offset_symb);
if (abs(d) > 0.3) {
if (ebp.toa < ts_offset_symb)
ebp.toa = d;
else
ebp.toa = -d;
temp_ts_corr_offset += ebp.toa * 4;
DBGLG() << "offs: " << ebp.toa << " " << temp_ts_corr_offset << std::endl;
}
}
auto a = gsm_sch_check_fn(current_gsm_time_updated.FN() - 1);
auto b = gsm_sch_check_fn(current_gsm_time_updated.FN());
auto c = gsm_sch_check_fn(current_gsm_time_updated.FN() + 1);
DBGLG() << "L SCH : Timing offset " << rv << " " << ebp.toa << " " << a << b << c << "fn "
<< current_gsm_time_updated.FN() << ":" << current_gsm_time_updated.TN() << std::endl;
delete bits;
return true;
} else {
DBGLG2() << "L SCH : \x1B[31m decode fail \033[0m @ toa:" << ebp.toa << " "
<< current_gsm_time.FN() << ":" << current_gsm_time.TN() << std::endl;
}
delete bits;
}
return false;
}
/*
accumulates a full big buffer consisting of 8*12 timeslots, then:
either
1) adjusts gain if necessary and starts over
2) searches and finds SCH and is done
*/
SCH_STATE ms_trx::search_for_sch(dev_buf_t *rcd)
{
static unsigned int sch_pos = 0;
auto to_copy = SCH_LEN_SPS - sch_pos;
if (sch_thread_done)
return SCH_STATE::FOUND;
if (rcv_done)
return SCH_STATE::SEARCHING;
if (sch_pos == 0) // keep first ts for time delta calc
first_sch_buf_rcv_ts = rcd->get_first_ts();
if (to_copy) {
auto spsmax = rcd->actual_samples_per_buffer();
if (to_copy > (unsigned int)spsmax)
sch_pos += rcd->readall(first_sch_buf + sch_pos);
else
sch_pos += rcd->read_n(first_sch_buf + sch_pos, 0, to_copy);
} else { // (!to_copy)
sch_pos = 0;
rcv_done = true;
auto sch_search_fun = [this] {
const auto target_val = rxFullScale / 8;
float sum = normed_abs_sum(first_sch_buf, SCH_LEN_SPS);
//FIXME: arbitrary value, gain cutoff
if (sum > target_val || cfg.rxgain >= 60) // enough ?
sch_thread_done = this->handle_sch(true);
else {
std::cerr << "\x1B[32m #RXG \033[0m gain " << cfg.rxgain << " -> " << cfg.rxgain + 4
<< " sample avg:" << sum << " target: >=" << target_val << std::endl;
setRxGain(cfg.rxgain + 4);
}
if (!sch_thread_done)
rcv_done = false; // retry!
};
worker_thread.add_task(sch_search_fun);
}
return SCH_STATE::SEARCHING;
}
void ms_trx::grab_bursts(dev_buf_t *rcd)
{
// partial burst samples read from the last buffer
static int partial_rdofs = 0;
static bool first_call = true;
int to_skip = 0;
// round up to next burst by calculating the time between sch detection and now
if (first_call) {
const auto next_burst_start = rcd->get_first_ts() - first_sch_ts_start;
const auto fullts = next_burst_start / ONE_TS_BURST_LEN;
const auto fracts = next_burst_start % ONE_TS_BURST_LEN;
to_skip = ONE_TS_BURST_LEN - fracts;
for (unsigned int i = 0; i < fullts; i++)
timekeeper.inc_and_update(first_sch_ts_start + i * ONE_TS_BURST_LEN);
if (fracts)
timekeeper.inc_both();
timekeeper.dec_by_one(); // oops, off by one?
timekeeper.set(timekeeper.gsmtime(), rcd->get_first_ts() - ONE_TS_BURST_LEN + to_skip);
DBGLG() << "this ts: " << rcd->get_first_ts() << " diff full TN: " << fullts << " frac TN: " << fracts
<< " GSM now: " << timekeeper.gsmtime().FN() << ":" << timekeeper.gsmtime().TN() << " is sch? "
<< gsm_sch_check_fn(timekeeper.gsmtime().FN()) << std::endl;
first_call = false;
}
if (partial_rdofs) {
auto first_remaining = ONE_TS_BURST_LEN - partial_rdofs;
auto rd = rcd->read_n(burst_copy_buffer + partial_rdofs, 0, first_remaining);
if (rd != (int)first_remaining) {
partial_rdofs += rd;
return;
}
timekeeper.inc_and_update_safe(rcd->get_first_ts() - partial_rdofs);
handle_sch_or_nb();
to_skip = first_remaining;
}
// apply sample rate slippage compensation
to_skip -= temp_ts_corr_offset;
// FIXME: happens rarely, read_n start -1 blows up
// this is fine: will just be corrected one buffer later
if (to_skip < 0)
to_skip = 0;
else
temp_ts_corr_offset = 0;
const auto left_after_burst = rcd->actual_samples_per_buffer() - to_skip;
const int full = left_after_burst / ONE_TS_BURST_LEN;
const int frac = left_after_burst % ONE_TS_BURST_LEN;
for (int i = 0; i < full; i++) {
rcd->read_n(burst_copy_buffer, to_skip + i * ONE_TS_BURST_LEN, ONE_TS_BURST_LEN);
timekeeper.inc_and_update_safe(rcd->get_first_ts() + to_skip + i * ONE_TS_BURST_LEN);
handle_sch_or_nb();
}
if (frac)
rcd->read_n(burst_copy_buffer, to_skip + full * ONE_TS_BURST_LEN, frac);
partial_rdofs = frac;
}