blob: be7d1f39fcaf730a174342daacabe6fb142e6f6b [file] [log] [blame]
Kévin Redon69b92d92019-01-24 16:39:20 +01001/**************************************************************************//**
2 * @file cmsis_armclang.h
3 * @brief CMSIS compiler ARMCLANG (ARM compiler V6) header file
4 * @version V5.0.1
5 * @date 02. February 2017
6 ******************************************************************************/
7/*
8 * Copyright (c) 2009-2017 ARM Limited. All rights reserved.
9 *
10 * SPDX-License-Identifier: Apache-2.0
11 *
12 * Licensed under the Apache License, Version 2.0 (the License); you may
13 * not use this file except in compliance with the License.
14 * You may obtain a copy of the License at
15 *
16 * www.apache.org/licenses/LICENSE-2.0
17 *
18 * Unless required by applicable law or agreed to in writing, software
19 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
20 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21 * See the License for the specific language governing permissions and
22 * limitations under the License.
23 */
24
25#ifndef __CMSIS_ARMCLANG_H
26#define __CMSIS_ARMCLANG_H
27
28#ifndef __ARM_COMPAT_H
29#include <arm_compat.h> /* Compatibility header for ARM Compiler 5 intrinsics */
30#endif
31
32/* CMSIS compiler specific defines */
33#ifndef __ASM
34 #define __ASM __asm
35#endif
36#ifndef __INLINE
37 #define __INLINE __inline
38#endif
39#ifndef __STATIC_INLINE
40 #define __STATIC_INLINE static __inline
41#endif
42#ifndef __NO_RETURN
43 #define __NO_RETURN __attribute__((noreturn))
44#endif
45#ifndef __USED
46 #define __USED __attribute__((used))
47#endif
48#ifndef __WEAK
49 #define __WEAK __attribute__((weak))
50#endif
51#ifndef __UNALIGNED_UINT32
52 #pragma clang diagnostic push
53 #pragma clang diagnostic ignored "-Wpacked"
54 struct __attribute__((packed)) T_UINT32 { uint32_t v; };
55 #pragma clang diagnostic pop
56 #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v)
57#endif
58#ifndef __ALIGNED
59 #define __ALIGNED(x) __attribute__((aligned(x)))
60#endif
61#ifndef __PACKED
62 #define __PACKED __attribute__((packed, aligned(1)))
63#endif
64#ifndef __PACKED_STRUCT
65 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1)))
66#endif
67
68
69/* ########################### Core Function Access ########################### */
70/** \ingroup CMSIS_Core_FunctionInterface
71 \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
72 @{
73 */
74
75/**
76 \brief Enable IRQ Interrupts
77 \details Enables IRQ interrupts by clearing the I-bit in the CPSR.
78 Can only be executed in Privileged modes.
79 */
80/* intrinsic void __enable_irq(); see arm_compat.h */
81
82
83/**
84 \brief Disable IRQ Interrupts
85 \details Disables IRQ interrupts by setting the I-bit in the CPSR.
86 Can only be executed in Privileged modes.
87 */
88/* intrinsic void __disable_irq(); see arm_compat.h */
89
90
91/**
92 \brief Get Control Register
93 \details Returns the content of the Control Register.
94 \return Control Register value
95 */
96__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_CONTROL(void)
97{
98 uint32_t result;
99
100 __ASM volatile ("MRS %0, control" : "=r" (result) );
101 return(result);
102}
103
104
105#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
106/**
107 \brief Get Control Register (non-secure)
108 \details Returns the content of the non-secure Control Register when in secure mode.
109 \return non-secure Control Register value
110 */
111__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_CONTROL_NS(void)
112{
113 uint32_t result;
114
115 __ASM volatile ("MRS %0, control_ns" : "=r" (result) );
116 return(result);
117}
118#endif
119
120
121/**
122 \brief Set Control Register
123 \details Writes the given value to the Control Register.
124 \param [in] control Control Register value to set
125 */
126__attribute__((always_inline)) __STATIC_INLINE void __set_CONTROL(uint32_t control)
127{
128 __ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
129}
130
131
132#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
133/**
134 \brief Set Control Register (non-secure)
135 \details Writes the given value to the non-secure Control Register when in secure state.
136 \param [in] control Control Register value to set
137 */
138__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_CONTROL_NS(uint32_t control)
139{
140 __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory");
141}
142#endif
143
144
145/**
146 \brief Get IPSR Register
147 \details Returns the content of the IPSR Register.
148 \return IPSR Register value
149 */
150__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_IPSR(void)
151{
152 uint32_t result;
153
154 __ASM volatile ("MRS %0, ipsr" : "=r" (result) );
155 return(result);
156}
157
158
159/**
160 \brief Get APSR Register
161 \details Returns the content of the APSR Register.
162 \return APSR Register value
163 */
164__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_APSR(void)
165{
166 uint32_t result;
167
168 __ASM volatile ("MRS %0, apsr" : "=r" (result) );
169 return(result);
170}
171
172
173/**
174 \brief Get xPSR Register
175 \details Returns the content of the xPSR Register.
176 \return xPSR Register value
177 */
178__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_xPSR(void)
179{
180 uint32_t result;
181
182 __ASM volatile ("MRS %0, xpsr" : "=r" (result) );
183 return(result);
184}
185
186
187/**
188 \brief Get Process Stack Pointer
189 \details Returns the current value of the Process Stack Pointer (PSP).
190 \return PSP Register value
191 */
192__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSP(void)
193{
194 register uint32_t result;
195
196 __ASM volatile ("MRS %0, psp" : "=r" (result) );
197 return(result);
198}
199
200
201#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
202/**
203 \brief Get Process Stack Pointer (non-secure)
204 \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state.
205 \return PSP Register value
206 */
207__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSP_NS(void)
208{
209 register uint32_t result;
210
211 __ASM volatile ("MRS %0, psp_ns" : "=r" (result) );
212 return(result);
213}
214#endif
215
216
217/**
218 \brief Set Process Stack Pointer
219 \details Assigns the given value to the Process Stack Pointer (PSP).
220 \param [in] topOfProcStack Process Stack Pointer value to set
221 */
222__attribute__((always_inline)) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
223{
224 __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : );
225}
226
227
228#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
229/**
230 \brief Set Process Stack Pointer (non-secure)
231 \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state.
232 \param [in] topOfProcStack Process Stack Pointer value to set
233 */
234__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack)
235{
236 __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : );
237}
238#endif
239
240
241/**
242 \brief Get Main Stack Pointer
243 \details Returns the current value of the Main Stack Pointer (MSP).
244 \return MSP Register value
245 */
246__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSP(void)
247{
248 register uint32_t result;
249
250 __ASM volatile ("MRS %0, msp" : "=r" (result) );
251 return(result);
252}
253
254
255#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
256/**
257 \brief Get Main Stack Pointer (non-secure)
258 \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state.
259 \return MSP Register value
260 */
261__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSP_NS(void)
262{
263 register uint32_t result;
264
265 __ASM volatile ("MRS %0, msp_ns" : "=r" (result) );
266 return(result);
267}
268#endif
269
270
271/**
272 \brief Set Main Stack Pointer
273 \details Assigns the given value to the Main Stack Pointer (MSP).
274 \param [in] topOfMainStack Main Stack Pointer value to set
275 */
276__attribute__((always_inline)) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
277{
278 __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : );
279}
280
281
282#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
283/**
284 \brief Set Main Stack Pointer (non-secure)
285 \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state.
286 \param [in] topOfMainStack Main Stack Pointer value to set
287 */
288__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack)
289{
290 __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : );
291}
292#endif
293
294
295/**
296 \brief Get Priority Mask
297 \details Returns the current state of the priority mask bit from the Priority Mask Register.
298 \return Priority Mask value
299 */
300__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PRIMASK(void)
301{
302 uint32_t result;
303
304 __ASM volatile ("MRS %0, primask" : "=r" (result) );
305 return(result);
306}
307
308
309#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
310/**
311 \brief Get Priority Mask (non-secure)
312 \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state.
313 \return Priority Mask value
314 */
315__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PRIMASK_NS(void)
316{
317 uint32_t result;
318
319 __ASM volatile ("MRS %0, primask_ns" : "=r" (result) );
320 return(result);
321}
322#endif
323
324
325/**
326 \brief Set Priority Mask
327 \details Assigns the given value to the Priority Mask Register.
328 \param [in] priMask Priority Mask
329 */
330__attribute__((always_inline)) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
331{
332 __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
333}
334
335
336#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
337/**
338 \brief Set Priority Mask (non-secure)
339 \details Assigns the given value to the non-secure Priority Mask Register when in secure state.
340 \param [in] priMask Priority Mask
341 */
342__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PRIMASK_NS(uint32_t priMask)
343{
344 __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory");
345}
346#endif
347
348
349#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
350 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
351 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
352/**
353 \brief Enable FIQ
354 \details Enables FIQ interrupts by clearing the F-bit in the CPSR.
355 Can only be executed in Privileged modes.
356 */
357#define __enable_fault_irq __enable_fiq /* see arm_compat.h */
358
359
360/**
361 \brief Disable FIQ
362 \details Disables FIQ interrupts by setting the F-bit in the CPSR.
363 Can only be executed in Privileged modes.
364 */
365#define __disable_fault_irq __disable_fiq /* see arm_compat.h */
366
367
368/**
369 \brief Get Base Priority
370 \details Returns the current value of the Base Priority register.
371 \return Base Priority register value
372 */
373__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_BASEPRI(void)
374{
375 uint32_t result;
376
377 __ASM volatile ("MRS %0, basepri" : "=r" (result) );
378 return(result);
379}
380
381
382#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
383/**
384 \brief Get Base Priority (non-secure)
385 \details Returns the current value of the non-secure Base Priority register when in secure state.
386 \return Base Priority register value
387 */
388__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_BASEPRI_NS(void)
389{
390 uint32_t result;
391
392 __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) );
393 return(result);
394}
395#endif
396
397
398/**
399 \brief Set Base Priority
400 \details Assigns the given value to the Base Priority register.
401 \param [in] basePri Base Priority value to set
402 */
403__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
404{
405 __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory");
406}
407
408
409#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
410/**
411 \brief Set Base Priority (non-secure)
412 \details Assigns the given value to the non-secure Base Priority register when in secure state.
413 \param [in] basePri Base Priority value to set
414 */
415__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_BASEPRI_NS(uint32_t basePri)
416{
417 __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory");
418}
419#endif
420
421
422/**
423 \brief Set Base Priority with condition
424 \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
425 or the new value increases the BASEPRI priority level.
426 \param [in] basePri Base Priority value to set
427 */
428__attribute__((always_inline)) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri)
429{
430 __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory");
431}
432
433
434/**
435 \brief Get Fault Mask
436 \details Returns the current value of the Fault Mask register.
437 \return Fault Mask register value
438 */
439__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
440{
441 uint32_t result;
442
443 __ASM volatile ("MRS %0, faultmask" : "=r" (result) );
444 return(result);
445}
446
447
448#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
449/**
450 \brief Get Fault Mask (non-secure)
451 \details Returns the current value of the non-secure Fault Mask register when in secure state.
452 \return Fault Mask register value
453 */
454__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_FAULTMASK_NS(void)
455{
456 uint32_t result;
457
458 __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) );
459 return(result);
460}
461#endif
462
463
464/**
465 \brief Set Fault Mask
466 \details Assigns the given value to the Fault Mask register.
467 \param [in] faultMask Fault Mask value to set
468 */
469__attribute__((always_inline)) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
470{
471 __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
472}
473
474
475#if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3))
476/**
477 \brief Set Fault Mask (non-secure)
478 \details Assigns the given value to the non-secure Fault Mask register when in secure state.
479 \param [in] faultMask Fault Mask value to set
480 */
481__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask)
482{
483 __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory");
484}
485#endif
486
487#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
488 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
489 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
490
491
492#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
493 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
494
495/**
496 \brief Get Process Stack Pointer Limit
497 \details Returns the current value of the Process Stack Pointer Limit (PSPLIM).
498 \return PSPLIM Register value
499 */
500__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_PSPLIM(void)
501{
502 register uint32_t result;
503
504 __ASM volatile ("MRS %0, psplim" : "=r" (result) );
505 return(result);
506}
507
508
509#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
510 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
511/**
512 \brief Get Process Stack Pointer Limit (non-secure)
513 \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
514 \return PSPLIM Register value
515 */
516__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_PSPLIM_NS(void)
517{
518 register uint32_t result;
519
520 __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) );
521 return(result);
522}
523#endif
524
525
526/**
527 \brief Set Process Stack Pointer Limit
528 \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM).
529 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
530 */
531__attribute__((always_inline)) __STATIC_INLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit)
532{
533 __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit));
534}
535
536
537#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
538 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
539/**
540 \brief Set Process Stack Pointer (non-secure)
541 \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state.
542 \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set
543 */
544__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit)
545{
546 __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit));
547}
548#endif
549
550
551/**
552 \brief Get Main Stack Pointer Limit
553 \details Returns the current value of the Main Stack Pointer Limit (MSPLIM).
554 \return MSPLIM Register value
555 */
556__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_MSPLIM(void)
557{
558 register uint32_t result;
559
560 __ASM volatile ("MRS %0, msplim" : "=r" (result) );
561
562 return(result);
563}
564
565
566#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
567 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
568/**
569 \brief Get Main Stack Pointer Limit (non-secure)
570 \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state.
571 \return MSPLIM Register value
572 */
573__attribute__((always_inline)) __STATIC_INLINE uint32_t __TZ_get_MSPLIM_NS(void)
574{
575 register uint32_t result;
576
577 __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) );
578 return(result);
579}
580#endif
581
582
583/**
584 \brief Set Main Stack Pointer Limit
585 \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM).
586 \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set
587 */
588__attribute__((always_inline)) __STATIC_INLINE void __set_MSPLIM(uint32_t MainStackPtrLimit)
589{
590 __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit));
591}
592
593
594#if ((defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) && \
595 (defined (__ARM_ARCH_8M_MAIN__) && (__ARM_ARCH_8M_MAIN__ == 1)) )
596/**
597 \brief Set Main Stack Pointer Limit (non-secure)
598 \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state.
599 \param [in] MainStackPtrLimit Main Stack Pointer value to set
600 */
601__attribute__((always_inline)) __STATIC_INLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit)
602{
603 __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit));
604}
605#endif
606
607#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
608 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
609
610
611#if ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
612 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
613
614/**
615 \brief Get FPSCR
616 \details Returns the current value of the Floating Point Status/Control register.
617 \return Floating Point Status/Control register value
618 */
619/* #define __get_FPSCR __builtin_arm_get_fpscr */
620__attribute__((always_inline)) __STATIC_INLINE uint32_t __get_FPSCR(void)
621{
622#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
623 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
624 uint32_t result;
625
626 __ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
627 return(result);
628#else
629 return(0U);
630#endif
631}
632
633
634/**
635 \brief Set FPSCR
636 \details Assigns the given value to the Floating Point Status/Control register.
637 \param [in] fpscr Floating Point Status/Control value to set
638 */
639/* #define __set_FPSCR __builtin_arm_set_fpscr */
640__attribute__((always_inline)) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
641{
642#if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \
643 (defined (__FPU_USED ) && (__FPU_USED == 1U)) )
644 __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "memory");
645#else
646 (void)fpscr;
647#endif
648}
649
650#endif /* ((defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
651 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
652
653
654
655/*@} end of CMSIS_Core_RegAccFunctions */
656
657
658/* ########################## Core Instruction Access ######################### */
659/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
660 Access to dedicated instructions
661 @{
662*/
663
664/* Define macros for porting to both thumb1 and thumb2.
665 * For thumb1, use low register (r0-r7), specified by constraint "l"
666 * Otherwise, use general registers, specified by constraint "r" */
667#if defined (__thumb__) && !defined (__thumb2__)
668#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
669#define __CMSIS_GCC_USE_REG(r) "l" (r)
670#else
671#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
672#define __CMSIS_GCC_USE_REG(r) "r" (r)
673#endif
674
675/**
676 \brief No Operation
677 \details No Operation does nothing. This instruction can be used for code alignment purposes.
678 */
679#define __NOP __builtin_arm_nop
680
681/**
682 \brief Wait For Interrupt
683 \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
684 */
685#define __WFI __builtin_arm_wfi
686
687
688/**
689 \brief Wait For Event
690 \details Wait For Event is a hint instruction that permits the processor to enter
691 a low-power state until one of a number of events occurs.
692 */
693#define __WFE __builtin_arm_wfe
694
695
696/**
697 \brief Send Event
698 \details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
699 */
700#define __SEV __builtin_arm_sev
701
702
703/**
704 \brief Instruction Synchronization Barrier
705 \details Instruction Synchronization Barrier flushes the pipeline in the processor,
706 so that all instructions following the ISB are fetched from cache or memory,
707 after the instruction has been completed.
708 */
709#define __ISB() __builtin_arm_isb(0xF);
710
711/**
712 \brief Data Synchronization Barrier
713 \details Acts as a special kind of Data Memory Barrier.
714 It completes when all explicit memory accesses before this instruction complete.
715 */
716#define __DSB() __builtin_arm_dsb(0xF);
717
718
719/**
720 \brief Data Memory Barrier
721 \details Ensures the apparent order of the explicit memory operations before
722 and after the instruction, without ensuring their completion.
723 */
724#define __DMB() __builtin_arm_dmb(0xF);
725
726
727/**
728 \brief Reverse byte order (32 bit)
729 \details Reverses the byte order in integer value.
730 \param [in] value Value to reverse
731 \return Reversed value
732 */
733#define __REV __builtin_bswap32
734
735
736/**
737 \brief Reverse byte order (16 bit)
738 \details Reverses the byte order in two unsigned short values.
739 \param [in] value Value to reverse
740 \return Reversed value
741 */
742#define __REV16 __builtin_bswap16 /* ToDo ARMCLANG: check if __builtin_bswap16 could be used */
743#if 0
744__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
745{
746 uint32_t result;
747
748 __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
749 return(result);
750}
751#endif
752
753
754/**
755 \brief Reverse byte order in signed short value
756 \details Reverses the byte order in a signed short value with sign extension to integer.
757 \param [in] value Value to reverse
758 \return Reversed value
759 */
760 /* ToDo ARMCLANG: check if __builtin_bswap16 could be used */
761__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
762{
763 int32_t result;
764
765 __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
766 return(result);
767}
768
769
770/**
771 \brief Rotate Right in unsigned value (32 bit)
772 \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
773 \param [in] op1 Value to rotate
774 \param [in] op2 Number of Bits to rotate
775 \return Rotated value
776 */
777__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
778{
779 return (op1 >> op2) | (op1 << (32U - op2));
780}
781
782
783/**
784 \brief Breakpoint
785 \details Causes the processor to enter Debug state.
786 Debug tools can use this to investigate system state when the instruction at a particular address is reached.
787 \param [in] value is ignored by the processor.
788 If required, a debugger can use it to store additional information about the breakpoint.
789 */
790#define __BKPT(value) __ASM volatile ("bkpt "#value)
791
792
793/**
794 \brief Reverse bit order of value
795 \details Reverses the bit order of the given value.
796 \param [in] value Value to reverse
797 \return Reversed value
798 */
799 /* ToDo ARMCLANG: check if __builtin_arm_rbit is supported */
800__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
801{
802 uint32_t result;
803
804#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
805 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
806 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
807 __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
808#else
809 int32_t s = (4 /*sizeof(v)*/ * 8) - 1; /* extra shift needed at end */
810
811 result = value; /* r will be reversed bits of v; first get LSB of v */
812 for (value >>= 1U; value; value >>= 1U)
813 {
814 result <<= 1U;
815 result |= value & 1U;
816 s--;
817 }
818 result <<= s; /* shift when v's highest bits are zero */
819#endif
820 return(result);
821}
822
823
824/**
825 \brief Count leading zeros
826 \details Counts the number of leading zeros of a data value.
827 \param [in] value Value to count the leading zeros
828 \return number of leading zeros in value
829 */
830#define __CLZ __builtin_clz
831
832
833#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
834 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
835 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
836 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
837/**
838 \brief LDR Exclusive (8 bit)
839 \details Executes a exclusive LDR instruction for 8 bit value.
840 \param [in] ptr Pointer to data
841 \return value of type uint8_t at (*ptr)
842 */
843#define __LDREXB (uint8_t)__builtin_arm_ldrex
844
845
846/**
847 \brief LDR Exclusive (16 bit)
848 \details Executes a exclusive LDR instruction for 16 bit values.
849 \param [in] ptr Pointer to data
850 \return value of type uint16_t at (*ptr)
851 */
852#define __LDREXH (uint16_t)__builtin_arm_ldrex
853
854
855/**
856 \brief LDR Exclusive (32 bit)
857 \details Executes a exclusive LDR instruction for 32 bit values.
858 \param [in] ptr Pointer to data
859 \return value of type uint32_t at (*ptr)
860 */
861#define __LDREXW (uint32_t)__builtin_arm_ldrex
862
863
864/**
865 \brief STR Exclusive (8 bit)
866 \details Executes a exclusive STR instruction for 8 bit values.
867 \param [in] value Value to store
868 \param [in] ptr Pointer to location
869 \return 0 Function succeeded
870 \return 1 Function failed
871 */
872#define __STREXB (uint32_t)__builtin_arm_strex
873
874
875/**
876 \brief STR Exclusive (16 bit)
877 \details Executes a exclusive STR instruction for 16 bit values.
878 \param [in] value Value to store
879 \param [in] ptr Pointer to location
880 \return 0 Function succeeded
881 \return 1 Function failed
882 */
883#define __STREXH (uint32_t)__builtin_arm_strex
884
885
886/**
887 \brief STR Exclusive (32 bit)
888 \details Executes a exclusive STR instruction for 32 bit values.
889 \param [in] value Value to store
890 \param [in] ptr Pointer to location
891 \return 0 Function succeeded
892 \return 1 Function failed
893 */
894#define __STREXW (uint32_t)__builtin_arm_strex
895
896
897/**
898 \brief Remove the exclusive lock
899 \details Removes the exclusive lock which is created by LDREX.
900 */
901#define __CLREX __builtin_arm_clrex
902
903#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
904 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
905 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
906 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
907
908
909#if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
910 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
911 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) )
912/**
913 \brief Signed Saturate
914 \details Saturates a signed value.
915 \param [in] value Value to be saturated
916 \param [in] sat Bit position to saturate to (1..32)
917 \return Saturated value
918 */
919#define __SSAT __builtin_arm_ssat
920
921
922/**
923 \brief Unsigned Saturate
924 \details Saturates an unsigned value.
925 \param [in] value Value to be saturated
926 \param [in] sat Bit position to saturate to (0..31)
927 \return Saturated value
928 */
929#define __USAT __builtin_arm_usat
930
931
932/**
933 \brief Rotate Right with Extend (32 bit)
934 \details Moves each bit of a bitstring right by one bit.
935 The carry input is shifted in at the left end of the bitstring.
936 \param [in] value Value to rotate
937 \return Rotated value
938 */
939__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
940{
941 uint32_t result;
942
943 __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
944 return(result);
945}
946
947
948/**
949 \brief LDRT Unprivileged (8 bit)
950 \details Executes a Unprivileged LDRT instruction for 8 bit value.
951 \param [in] ptr Pointer to data
952 \return value of type uint8_t at (*ptr)
953 */
954__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *ptr)
955{
956 uint32_t result;
957
958 __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) );
959 return ((uint8_t) result); /* Add explicit type cast here */
960}
961
962
963/**
964 \brief LDRT Unprivileged (16 bit)
965 \details Executes a Unprivileged LDRT instruction for 16 bit values.
966 \param [in] ptr Pointer to data
967 \return value of type uint16_t at (*ptr)
968 */
969__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *ptr)
970{
971 uint32_t result;
972
973 __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) );
974 return ((uint16_t) result); /* Add explicit type cast here */
975}
976
977
978/**
979 \brief LDRT Unprivileged (32 bit)
980 \details Executes a Unprivileged LDRT instruction for 32 bit values.
981 \param [in] ptr Pointer to data
982 \return value of type uint32_t at (*ptr)
983 */
984__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *ptr)
985{
986 uint32_t result;
987
988 __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) );
989 return(result);
990}
991
992
993/**
994 \brief STRT Unprivileged (8 bit)
995 \details Executes a Unprivileged STRT instruction for 8 bit values.
996 \param [in] value Value to store
997 \param [in] ptr Pointer to location
998 */
999__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *ptr)
1000{
1001 __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1002}
1003
1004
1005/**
1006 \brief STRT Unprivileged (16 bit)
1007 \details Executes a Unprivileged STRT instruction for 16 bit values.
1008 \param [in] value Value to store
1009 \param [in] ptr Pointer to location
1010 */
1011__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *ptr)
1012{
1013 __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1014}
1015
1016
1017/**
1018 \brief STRT Unprivileged (32 bit)
1019 \details Executes a Unprivileged STRT instruction for 32 bit values.
1020 \param [in] value Value to store
1021 \param [in] ptr Pointer to location
1022 */
1023__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *ptr)
1024{
1025 __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) );
1026}
1027
1028#endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \
1029 (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \
1030 (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */
1031
1032
1033#if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1034 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) )
1035/**
1036 \brief Load-Acquire (8 bit)
1037 \details Executes a LDAB instruction for 8 bit value.
1038 \param [in] ptr Pointer to data
1039 \return value of type uint8_t at (*ptr)
1040 */
1041__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDAB(volatile uint8_t *ptr)
1042{
1043 uint32_t result;
1044
1045 __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) );
1046 return ((uint8_t) result);
1047}
1048
1049
1050/**
1051 \brief Load-Acquire (16 bit)
1052 \details Executes a LDAH instruction for 16 bit values.
1053 \param [in] ptr Pointer to data
1054 \return value of type uint16_t at (*ptr)
1055 */
1056__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDAH(volatile uint16_t *ptr)
1057{
1058 uint32_t result;
1059
1060 __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) );
1061 return ((uint16_t) result);
1062}
1063
1064
1065/**
1066 \brief Load-Acquire (32 bit)
1067 \details Executes a LDA instruction for 32 bit values.
1068 \param [in] ptr Pointer to data
1069 \return value of type uint32_t at (*ptr)
1070 */
1071__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDA(volatile uint32_t *ptr)
1072{
1073 uint32_t result;
1074
1075 __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) );
1076 return(result);
1077}
1078
1079
1080/**
1081 \brief Store-Release (8 bit)
1082 \details Executes a STLB instruction for 8 bit values.
1083 \param [in] value Value to store
1084 \param [in] ptr Pointer to location
1085 */
1086__attribute__((always_inline)) __STATIC_INLINE void __STLB(uint8_t value, volatile uint8_t *ptr)
1087{
1088 __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1089}
1090
1091
1092/**
1093 \brief Store-Release (16 bit)
1094 \details Executes a STLH instruction for 16 bit values.
1095 \param [in] value Value to store
1096 \param [in] ptr Pointer to location
1097 */
1098__attribute__((always_inline)) __STATIC_INLINE void __STLH(uint16_t value, volatile uint16_t *ptr)
1099{
1100 __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1101}
1102
1103
1104/**
1105 \brief Store-Release (32 bit)
1106 \details Executes a STL instruction for 32 bit values.
1107 \param [in] value Value to store
1108 \param [in] ptr Pointer to location
1109 */
1110__attribute__((always_inline)) __STATIC_INLINE void __STL(uint32_t value, volatile uint32_t *ptr)
1111{
1112 __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) );
1113}
1114
1115
1116/**
1117 \brief Load-Acquire Exclusive (8 bit)
1118 \details Executes a LDAB exclusive instruction for 8 bit value.
1119 \param [in] ptr Pointer to data
1120 \return value of type uint8_t at (*ptr)
1121 */
1122#define __LDAEXB (uint8_t)__builtin_arm_ldaex
1123
1124
1125/**
1126 \brief Load-Acquire Exclusive (16 bit)
1127 \details Executes a LDAH exclusive instruction for 16 bit values.
1128 \param [in] ptr Pointer to data
1129 \return value of type uint16_t at (*ptr)
1130 */
1131#define __LDAEXH (uint16_t)__builtin_arm_ldaex
1132
1133
1134/**
1135 \brief Load-Acquire Exclusive (32 bit)
1136 \details Executes a LDA exclusive instruction for 32 bit values.
1137 \param [in] ptr Pointer to data
1138 \return value of type uint32_t at (*ptr)
1139 */
1140#define __LDAEX (uint32_t)__builtin_arm_ldaex
1141
1142
1143/**
1144 \brief Store-Release Exclusive (8 bit)
1145 \details Executes a STLB exclusive instruction for 8 bit values.
1146 \param [in] value Value to store
1147 \param [in] ptr Pointer to location
1148 \return 0 Function succeeded
1149 \return 1 Function failed
1150 */
1151#define __STLEXB (uint32_t)__builtin_arm_stlex
1152
1153
1154/**
1155 \brief Store-Release Exclusive (16 bit)
1156 \details Executes a STLH exclusive instruction for 16 bit values.
1157 \param [in] value Value to store
1158 \param [in] ptr Pointer to location
1159 \return 0 Function succeeded
1160 \return 1 Function failed
1161 */
1162#define __STLEXH (uint32_t)__builtin_arm_stlex
1163
1164
1165/**
1166 \brief Store-Release Exclusive (32 bit)
1167 \details Executes a STL exclusive instruction for 32 bit values.
1168 \param [in] value Value to store
1169 \param [in] ptr Pointer to location
1170 \return 0 Function succeeded
1171 \return 1 Function failed
1172 */
1173#define __STLEX (uint32_t)__builtin_arm_stlex
1174
1175#endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \
1176 (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */
1177
1178/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
1179
1180
1181/* ################### Compiler specific Intrinsics ########################### */
1182/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
1183 Access to dedicated SIMD instructions
1184 @{
1185*/
1186
1187#if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1))
1188
1189__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
1190{
1191 uint32_t result;
1192
1193 __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1194 return(result);
1195}
1196
1197__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
1198{
1199 uint32_t result;
1200
1201 __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1202 return(result);
1203}
1204
1205__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
1206{
1207 uint32_t result;
1208
1209 __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1210 return(result);
1211}
1212
1213__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
1214{
1215 uint32_t result;
1216
1217 __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1218 return(result);
1219}
1220
1221__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
1222{
1223 uint32_t result;
1224
1225 __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1226 return(result);
1227}
1228
1229__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
1230{
1231 uint32_t result;
1232
1233 __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1234 return(result);
1235}
1236
1237
1238__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
1239{
1240 uint32_t result;
1241
1242 __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1243 return(result);
1244}
1245
1246__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
1247{
1248 uint32_t result;
1249
1250 __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1251 return(result);
1252}
1253
1254__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
1255{
1256 uint32_t result;
1257
1258 __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1259 return(result);
1260}
1261
1262__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
1263{
1264 uint32_t result;
1265
1266 __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1267 return(result);
1268}
1269
1270__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
1271{
1272 uint32_t result;
1273
1274 __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1275 return(result);
1276}
1277
1278__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
1279{
1280 uint32_t result;
1281
1282 __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1283 return(result);
1284}
1285
1286
1287__attribute__((always_inline)) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
1288{
1289 uint32_t result;
1290
1291 __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1292 return(result);
1293}
1294
1295__attribute__((always_inline)) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
1296{
1297 uint32_t result;
1298
1299 __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1300 return(result);
1301}
1302
1303__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
1304{
1305 uint32_t result;
1306
1307 __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1308 return(result);
1309}
1310
1311__attribute__((always_inline)) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
1312{
1313 uint32_t result;
1314
1315 __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1316 return(result);
1317}
1318
1319__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
1320{
1321 uint32_t result;
1322
1323 __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1324 return(result);
1325}
1326
1327__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
1328{
1329 uint32_t result;
1330
1331 __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1332 return(result);
1333}
1334
1335__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
1336{
1337 uint32_t result;
1338
1339 __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1340 return(result);
1341}
1342
1343__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
1344{
1345 uint32_t result;
1346
1347 __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1348 return(result);
1349}
1350
1351__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
1352{
1353 uint32_t result;
1354
1355 __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1356 return(result);
1357}
1358
1359__attribute__((always_inline)) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
1360{
1361 uint32_t result;
1362
1363 __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1364 return(result);
1365}
1366
1367__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
1368{
1369 uint32_t result;
1370
1371 __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1372 return(result);
1373}
1374
1375__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
1376{
1377 uint32_t result;
1378
1379 __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1380 return(result);
1381}
1382
1383__attribute__((always_inline)) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
1384{
1385 uint32_t result;
1386
1387 __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1388 return(result);
1389}
1390
1391__attribute__((always_inline)) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
1392{
1393 uint32_t result;
1394
1395 __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1396 return(result);
1397}
1398
1399__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
1400{
1401 uint32_t result;
1402
1403 __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1404 return(result);
1405}
1406
1407__attribute__((always_inline)) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
1408{
1409 uint32_t result;
1410
1411 __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1412 return(result);
1413}
1414
1415__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
1416{
1417 uint32_t result;
1418
1419 __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1420 return(result);
1421}
1422
1423__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
1424{
1425 uint32_t result;
1426
1427 __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1428 return(result);
1429}
1430
1431__attribute__((always_inline)) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
1432{
1433 uint32_t result;
1434
1435 __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1436 return(result);
1437}
1438
1439__attribute__((always_inline)) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
1440{
1441 uint32_t result;
1442
1443 __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1444 return(result);
1445}
1446
1447__attribute__((always_inline)) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
1448{
1449 uint32_t result;
1450
1451 __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1452 return(result);
1453}
1454
1455__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
1456{
1457 uint32_t result;
1458
1459 __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1460 return(result);
1461}
1462
1463__attribute__((always_inline)) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
1464{
1465 uint32_t result;
1466
1467 __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1468 return(result);
1469}
1470
1471__attribute__((always_inline)) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
1472{
1473 uint32_t result;
1474
1475 __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1476 return(result);
1477}
1478
1479__attribute__((always_inline)) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
1480{
1481 uint32_t result;
1482
1483 __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1484 return(result);
1485}
1486
1487__attribute__((always_inline)) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
1488{
1489 uint32_t result;
1490
1491 __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1492 return(result);
1493}
1494
1495#define __SSAT16(ARG1,ARG2) \
1496({ \
1497 int32_t __RES, __ARG1 = (ARG1); \
1498 __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1499 __RES; \
1500 })
1501
1502#define __USAT16(ARG1,ARG2) \
1503({ \
1504 uint32_t __RES, __ARG1 = (ARG1); \
1505 __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
1506 __RES; \
1507 })
1508
1509__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
1510{
1511 uint32_t result;
1512
1513 __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
1514 return(result);
1515}
1516
1517__attribute__((always_inline)) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
1518{
1519 uint32_t result;
1520
1521 __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1522 return(result);
1523}
1524
1525__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
1526{
1527 uint32_t result;
1528
1529 __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
1530 return(result);
1531}
1532
1533__attribute__((always_inline)) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
1534{
1535 uint32_t result;
1536
1537 __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1538 return(result);
1539}
1540
1541__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
1542{
1543 uint32_t result;
1544
1545 __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1546 return(result);
1547}
1548
1549__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
1550{
1551 uint32_t result;
1552
1553 __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1554 return(result);
1555}
1556
1557__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
1558{
1559 uint32_t result;
1560
1561 __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1562 return(result);
1563}
1564
1565__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
1566{
1567 uint32_t result;
1568
1569 __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1570 return(result);
1571}
1572
1573__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
1574{
1575 union llreg_u{
1576 uint32_t w32[2];
1577 uint64_t w64;
1578 } llr;
1579 llr.w64 = acc;
1580
1581#ifndef __ARMEB__ /* Little endian */
1582 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1583#else /* Big endian */
1584 __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1585#endif
1586
1587 return(llr.w64);
1588}
1589
1590__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
1591{
1592 union llreg_u{
1593 uint32_t w32[2];
1594 uint64_t w64;
1595 } llr;
1596 llr.w64 = acc;
1597
1598#ifndef __ARMEB__ /* Little endian */
1599 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1600#else /* Big endian */
1601 __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1602#endif
1603
1604 return(llr.w64);
1605}
1606
1607__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
1608{
1609 uint32_t result;
1610
1611 __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1612 return(result);
1613}
1614
1615__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
1616{
1617 uint32_t result;
1618
1619 __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1620 return(result);
1621}
1622
1623__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
1624{
1625 uint32_t result;
1626
1627 __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1628 return(result);
1629}
1630
1631__attribute__((always_inline)) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
1632{
1633 uint32_t result;
1634
1635 __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
1636 return(result);
1637}
1638
1639__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
1640{
1641 union llreg_u{
1642 uint32_t w32[2];
1643 uint64_t w64;
1644 } llr;
1645 llr.w64 = acc;
1646
1647#ifndef __ARMEB__ /* Little endian */
1648 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1649#else /* Big endian */
1650 __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1651#endif
1652
1653 return(llr.w64);
1654}
1655
1656__attribute__((always_inline)) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
1657{
1658 union llreg_u{
1659 uint32_t w32[2];
1660 uint64_t w64;
1661 } llr;
1662 llr.w64 = acc;
1663
1664#ifndef __ARMEB__ /* Little endian */
1665 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
1666#else /* Big endian */
1667 __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
1668#endif
1669
1670 return(llr.w64);
1671}
1672
1673__attribute__((always_inline)) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
1674{
1675 uint32_t result;
1676
1677 __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1678 return(result);
1679}
1680
1681__attribute__((always_inline)) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
1682{
1683 int32_t result;
1684
1685 __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1686 return(result);
1687}
1688
1689__attribute__((always_inline)) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
1690{
1691 int32_t result;
1692
1693 __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
1694 return(result);
1695}
1696
1697#if 0
1698#define __PKHBT(ARG1,ARG2,ARG3) \
1699({ \
1700 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1701 __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1702 __RES; \
1703 })
1704
1705#define __PKHTB(ARG1,ARG2,ARG3) \
1706({ \
1707 uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
1708 if (ARG3 == 0) \
1709 __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
1710 else \
1711 __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
1712 __RES; \
1713 })
1714#endif
1715
1716#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
1717 ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
1718
1719#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
1720 ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
1721
1722__attribute__((always_inline)) __STATIC_INLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
1723{
1724 int32_t result;
1725
1726 __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
1727 return(result);
1728}
1729
1730#endif /* (__ARM_FEATURE_DSP == 1) */
1731/*@} end of group CMSIS_SIMD_intrinsics */
1732
1733
1734#endif /* __CMSIS_ARMCLANG_H */