blob: ba9ab33b5ae617b46a5b57d7b33743282dd6be44 [file] [log] [blame]
Neels Hofmeyr17518fe2017-06-20 04:35:06 +02001/*! \file milenage.c
2 * 3GPP AKA - Milenage algorithm (3GPP TS 35.205, .206, .207, .208) */
Harald Welte781bd5d2011-12-06 22:23:52 +01003/*
Harald Welte781bd5d2011-12-06 22:23:52 +01004 * Copyright (c) 2006-2007 <j@w1.fi>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * Alternatively, this software may be distributed under the terms of BSD
11 * license.
12 *
13 * See README and COPYING for more details.
14 *
Harald Weltee08da972017-11-13 01:00:26 +090015 * SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
16 *
Harald Welte781bd5d2011-12-06 22:23:52 +010017 * This file implements an example authentication algorithm defined for 3GPP
18 * AKA. This can be used to implement a simple HLR/AuC into hlr_auc_gw to allow
19 * EAP-AKA to be tested properly with real USIM cards.
20 *
21 * This implementations assumes that the r1..r5 and c1..c5 constants defined in
22 * TS 35.206 are used, i.e., r1=64, r2=0, r3=32, r4=64, r5=96, c1=00..00,
23 * c2=00..01, c3=00..02, c4=00..04, c5=00..08. The block cipher is assumed to
24 * be AES (Rijndael).
25 */
26
27#include "includes.h"
28
29#include "common.h"
30#include "aes_wrap.h"
31#include "milenage.h"
Neels Hofmeyraa84b712017-12-18 03:12:01 +010032#include <osmocom/crypt/auth.h>
Harald Welte781bd5d2011-12-06 22:23:52 +010033
34/**
35 * milenage_f1 - Milenage f1 and f1* algorithms
36 * @opc: OPc = 128-bit value derived from OP and K
37 * @k: K = 128-bit subscriber key
38 * @_rand: RAND = 128-bit random challenge
39 * @sqn: SQN = 48-bit sequence number
40 * @amf: AMF = 16-bit authentication management field
41 * @mac_a: Buffer for MAC-A = 64-bit network authentication code, or %NULL
42 * @mac_s: Buffer for MAC-S = 64-bit resync authentication code, or %NULL
43 * Returns: 0 on success, -1 on failure
44 */
45int milenage_f1(const u8 *opc, const u8 *k, const u8 *_rand,
46 const u8 *sqn, const u8 *amf, u8 *mac_a, u8 *mac_s)
47{
48 u8 tmp1[16], tmp2[16], tmp3[16];
49 int i;
50
51 /* tmp1 = TEMP = E_K(RAND XOR OP_C) */
52 for (i = 0; i < 16; i++)
53 tmp1[i] = _rand[i] ^ opc[i];
54 if (aes_128_encrypt_block(k, tmp1, tmp1))
55 return -1;
56
57 /* tmp2 = IN1 = SQN || AMF || SQN || AMF */
58 os_memcpy(tmp2, sqn, 6);
59 os_memcpy(tmp2 + 6, amf, 2);
60 os_memcpy(tmp2 + 8, tmp2, 8);
61
62 /* OUT1 = E_K(TEMP XOR rot(IN1 XOR OP_C, r1) XOR c1) XOR OP_C */
63
64 /* rotate (tmp2 XOR OP_C) by r1 (= 0x40 = 8 bytes) */
65 for (i = 0; i < 16; i++)
66 tmp3[(i + 8) % 16] = tmp2[i] ^ opc[i];
67 /* XOR with TEMP = E_K(RAND XOR OP_C) */
68 for (i = 0; i < 16; i++)
69 tmp3[i] ^= tmp1[i];
70 /* XOR with c1 (= ..00, i.e., NOP) */
71
72 /* f1 || f1* = E_K(tmp3) XOR OP_c */
73 if (aes_128_encrypt_block(k, tmp3, tmp1))
74 return -1;
75 for (i = 0; i < 16; i++)
76 tmp1[i] ^= opc[i];
77 if (mac_a)
78 os_memcpy(mac_a, tmp1, 8); /* f1 */
79 if (mac_s)
80 os_memcpy(mac_s, tmp1 + 8, 8); /* f1* */
81 return 0;
82}
83
84
85/**
86 * milenage_f2345 - Milenage f2, f3, f4, f5, f5* algorithms
87 * @opc: OPc = 128-bit value derived from OP and K
88 * @k: K = 128-bit subscriber key
89 * @_rand: RAND = 128-bit random challenge
90 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
91 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
92 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
93 * @ak: Buffer for AK = 48-bit anonymity key (f5), or %NULL
94 * @akstar: Buffer for AK = 48-bit anonymity key (f5*), or %NULL
95 * Returns: 0 on success, -1 on failure
96 */
97int milenage_f2345(const u8 *opc, const u8 *k, const u8 *_rand,
98 u8 *res, u8 *ck, u8 *ik, u8 *ak, u8 *akstar)
99{
100 u8 tmp1[16], tmp2[16], tmp3[16];
101 int i;
102
103 /* tmp2 = TEMP = E_K(RAND XOR OP_C) */
104 for (i = 0; i < 16; i++)
105 tmp1[i] = _rand[i] ^ opc[i];
106 if (aes_128_encrypt_block(k, tmp1, tmp2))
107 return -1;
108
109 /* OUT2 = E_K(rot(TEMP XOR OP_C, r2) XOR c2) XOR OP_C */
110 /* OUT3 = E_K(rot(TEMP XOR OP_C, r3) XOR c3) XOR OP_C */
111 /* OUT4 = E_K(rot(TEMP XOR OP_C, r4) XOR c4) XOR OP_C */
112 /* OUT5 = E_K(rot(TEMP XOR OP_C, r5) XOR c5) XOR OP_C */
113
114 /* f2 and f5 */
115 /* rotate by r2 (= 0, i.e., NOP) */
116 for (i = 0; i < 16; i++)
117 tmp1[i] = tmp2[i] ^ opc[i];
118 tmp1[15] ^= 1; /* XOR c2 (= ..01) */
119 /* f5 || f2 = E_K(tmp1) XOR OP_c */
120 if (aes_128_encrypt_block(k, tmp1, tmp3))
121 return -1;
122 for (i = 0; i < 16; i++)
123 tmp3[i] ^= opc[i];
124 if (res)
125 os_memcpy(res, tmp3 + 8, 8); /* f2 */
126 if (ak)
127 os_memcpy(ak, tmp3, 6); /* f5 */
128
129 /* f3 */
130 if (ck) {
131 /* rotate by r3 = 0x20 = 4 bytes */
132 for (i = 0; i < 16; i++)
133 tmp1[(i + 12) % 16] = tmp2[i] ^ opc[i];
134 tmp1[15] ^= 2; /* XOR c3 (= ..02) */
135 if (aes_128_encrypt_block(k, tmp1, ck))
136 return -1;
137 for (i = 0; i < 16; i++)
138 ck[i] ^= opc[i];
139 }
140
141 /* f4 */
142 if (ik) {
143 /* rotate by r4 = 0x40 = 8 bytes */
144 for (i = 0; i < 16; i++)
145 tmp1[(i + 8) % 16] = tmp2[i] ^ opc[i];
146 tmp1[15] ^= 4; /* XOR c4 (= ..04) */
147 if (aes_128_encrypt_block(k, tmp1, ik))
148 return -1;
149 for (i = 0; i < 16; i++)
150 ik[i] ^= opc[i];
151 }
152
153 /* f5* */
154 if (akstar) {
155 /* rotate by r5 = 0x60 = 12 bytes */
156 for (i = 0; i < 16; i++)
157 tmp1[(i + 4) % 16] = tmp2[i] ^ opc[i];
158 tmp1[15] ^= 8; /* XOR c5 (= ..08) */
159 if (aes_128_encrypt_block(k, tmp1, tmp1))
160 return -1;
161 for (i = 0; i < 6; i++)
162 akstar[i] = tmp1[i] ^ opc[i];
163 }
164
165 return 0;
166}
167
168
169/**
170 * milenage_generate - Generate AKA AUTN,IK,CK,RES
171 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
172 * @amf: AMF = 16-bit authentication management field
173 * @k: K = 128-bit subscriber key
174 * @sqn: SQN = 48-bit sequence number
175 * @_rand: RAND = 128-bit random challenge
176 * @autn: Buffer for AUTN = 128-bit authentication token
177 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
178 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
179 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
180 * @res_len: Max length for res; set to used length or 0 on failure
181 */
182void milenage_generate(const u8 *opc, const u8 *amf, const u8 *k,
183 const u8 *sqn, const u8 *_rand, u8 *autn, u8 *ik,
184 u8 *ck, u8 *res, size_t *res_len)
185{
186 int i;
187 u8 mac_a[8], ak[6];
188
189 if (*res_len < 8) {
190 *res_len = 0;
191 return;
192 }
193 if (milenage_f1(opc, k, _rand, sqn, amf, mac_a, NULL) ||
194 milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL)) {
195 *res_len = 0;
196 return;
197 }
198 *res_len = 8;
199
200 /* AUTN = (SQN ^ AK) || AMF || MAC */
201 for (i = 0; i < 6; i++)
202 autn[i] = sqn[i] ^ ak[i];
203 os_memcpy(autn + 6, amf, 2);
204 os_memcpy(autn + 8, mac_a, 8);
205}
206
207
208/**
209 * milenage_auts - Milenage AUTS validation
210 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
211 * @k: K = 128-bit subscriber key
212 * @_rand: RAND = 128-bit random challenge
213 * @auts: AUTS = 112-bit authentication token from client
214 * @sqn: Buffer for SQN = 48-bit sequence number
215 * Returns: 0 = success (sqn filled), -1 on failure
216 */
217int milenage_auts(const u8 *opc, const u8 *k, const u8 *_rand, const u8 *auts,
218 u8 *sqn)
219{
220 u8 amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
221 u8 ak[6], mac_s[8];
222 int i;
223
224 if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
225 return -1;
226 for (i = 0; i < 6; i++)
227 sqn[i] = auts[i] ^ ak[i];
228 if (milenage_f1(opc, k, _rand, sqn, amf, NULL, mac_s) ||
229 memcmp(mac_s, auts + 6, 8) != 0)
230 return -1;
231 return 0;
232}
233
234
235/**
236 * gsm_milenage - Generate GSM-Milenage (3GPP TS 55.205) authentication triplet
237 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
238 * @k: K = 128-bit subscriber key
239 * @_rand: RAND = 128-bit random challenge
240 * @sres: Buffer for SRES = 32-bit SRES
241 * @kc: Buffer for Kc = 64-bit Kc
242 * Returns: 0 on success, -1 on failure
243 */
244int gsm_milenage(const u8 *opc, const u8 *k, const u8 *_rand, u8 *sres, u8 *kc)
245{
246 u8 res[8], ck[16], ik[16];
Harald Welte781bd5d2011-12-06 22:23:52 +0100247
248 if (milenage_f2345(opc, k, _rand, res, ck, ik, NULL, NULL))
249 return -1;
250
Neels Hofmeyraa84b712017-12-18 03:12:01 +0100251 osmo_auth_c3(kc, ck, ik);
Harald Welte76f4c5c2023-05-30 15:57:08 +0200252 osmo_auth_c2(sres, res, sizeof(res), 1);
Harald Welte781bd5d2011-12-06 22:23:52 +0100253
Harald Welte781bd5d2011-12-06 22:23:52 +0100254 return 0;
255}
256
257
258/**
259 * milenage_generate - Generate AKA AUTN,IK,CK,RES
260 * @opc: OPc = 128-bit operator variant algorithm configuration field (encr.)
261 * @k: K = 128-bit subscriber key
262 * @sqn: SQN = 48-bit sequence number
263 * @_rand: RAND = 128-bit random challenge
264 * @autn: AUTN = 128-bit authentication token
265 * @ik: Buffer for IK = 128-bit integrity key (f4), or %NULL
266 * @ck: Buffer for CK = 128-bit confidentiality key (f3), or %NULL
267 * @res: Buffer for RES = 64-bit signed response (f2), or %NULL
268 * @res_len: Variable that will be set to RES length
269 * @auts: 112-bit buffer for AUTS
270 * Returns: 0 on success, -1 on failure, or -2 on synchronization failure
271 */
272int milenage_check(const u8 *opc, const u8 *k, const u8 *sqn, const u8 *_rand,
273 const u8 *autn, u8 *ik, u8 *ck, u8 *res, size_t *res_len,
274 u8 *auts)
275{
276 int i;
277 u8 mac_a[8], ak[6], rx_sqn[6];
278 const u8 *amf;
279
280 wpa_hexdump(MSG_DEBUG, "Milenage: AUTN", autn, 16);
281 wpa_hexdump(MSG_DEBUG, "Milenage: RAND", _rand, 16);
282
283 if (milenage_f2345(opc, k, _rand, res, ck, ik, ak, NULL))
284 return -1;
285
286 *res_len = 8;
287 wpa_hexdump_key(MSG_DEBUG, "Milenage: RES", res, *res_len);
288 wpa_hexdump_key(MSG_DEBUG, "Milenage: CK", ck, 16);
289 wpa_hexdump_key(MSG_DEBUG, "Milenage: IK", ik, 16);
290 wpa_hexdump_key(MSG_DEBUG, "Milenage: AK", ak, 6);
291
292 /* AUTN = (SQN ^ AK) || AMF || MAC */
293 for (i = 0; i < 6; i++)
294 rx_sqn[i] = autn[i] ^ ak[i];
295 wpa_hexdump(MSG_DEBUG, "Milenage: SQN", rx_sqn, 6);
296
297 if (os_memcmp(rx_sqn, sqn, 6) <= 0) {
298 u8 auts_amf[2] = { 0x00, 0x00 }; /* TS 33.102 v7.0.0, 6.3.3 */
299 if (milenage_f2345(opc, k, _rand, NULL, NULL, NULL, NULL, ak))
300 return -1;
301 wpa_hexdump_key(MSG_DEBUG, "Milenage: AK*", ak, 6);
302 for (i = 0; i < 6; i++)
303 auts[i] = sqn[i] ^ ak[i];
304 if (milenage_f1(opc, k, _rand, sqn, auts_amf, NULL, auts + 6))
305 return -1;
306 wpa_hexdump(MSG_DEBUG, "Milenage: AUTS", auts, 14);
307 return -2;
308 }
309
310 amf = autn + 6;
311 wpa_hexdump(MSG_DEBUG, "Milenage: AMF", amf, 2);
312 if (milenage_f1(opc, k, _rand, rx_sqn, amf, mac_a, NULL))
313 return -1;
314
315 wpa_hexdump(MSG_DEBUG, "Milenage: MAC_A", mac_a, 8);
316
317 if (os_memcmp(mac_a, autn + 8, 8) != 0) {
318 wpa_printf(MSG_DEBUG, "Milenage: MAC mismatch");
319 wpa_hexdump(MSG_DEBUG, "Milenage: Received MAC_A",
320 autn + 8, 8);
321 return -1;
322 }
323
324 return 0;
325}
Harald Welte042afe72012-03-21 08:19:47 +0100326
327int milenage_opc_gen(u8 *opc, const u8 *k, const u8 *op)
328{
329 int i;
330
331 /* Encrypt OP using K */
332 if (aes_128_encrypt_block(k, op, opc))
333 return -1;
334
335 /* XOR the resulting Ek(OP) with OP */
336 for (i = 0; i < 16; i++)
337 opc[i] = opc[i] ^ op[i];
338
339 return 0;
340}