blob: ebbdbef4008bed0935cb03439e19a9f091e0edf1 [file] [log] [blame]
/* TRAU frame to RTP conversion */
/* (C) 2009,2020 by Harald Welte <laforge@gnumonks.org>
* All Rights Reserved
*
* SPDX-License-Identifier: GPL-2.0+
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include <osmocom/core/crc8gen.h>
#include <osmocom/codec/codec.h>
#include <osmocom/trau/trau_frame.h>
#include <osmocom/trau/trau_rtp.h>
/* this corresponds to the bit-lengths of the individual codec
* parameters as indicated in Table 1.1 of TS 46.010 */
static const uint8_t gsm_fr_map[] = {
6, 6, 5, 5, 4, 4, 3, 3,
7, 2, 2, 6, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 7, 2, 2, 6, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 7, 2, 2, 6, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 7, 2, 2, 6, 3,
3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3
};
/*
* EFR TRAU parity
*
* g(x) = x^3 + x^1 + 1
*/
static const struct osmo_crc8gen_code gsm0860_efr_crc3 = {
.bits = 3,
.poly = 0x3,
.init = 0x0,
.remainder = 0x7,
};
/* re-combine EFR parity bits */
static inline void efr_parity_bits_1(ubit_t *check_bits, const ubit_t *d_bits)
{
memcpy(check_bits + 0 , d_bits + 0, 22);
memcpy(check_bits + 22 , d_bits + 24, 3);
check_bits[25] = d_bits[28];
}
static inline void efr_parity_bits_2(ubit_t *check_bits, const ubit_t *d_bits)
{
memcpy(check_bits + 0 , d_bits + 42, 10);
memcpy(check_bits + 10 , d_bits + 90, 2);
}
static inline void efr_parity_bits_3(ubit_t *check_bits, const ubit_t *d_bits)
{
memcpy(check_bits + 0 , d_bits + 98, 5);
check_bits[5] = d_bits[104];
memcpy(check_bits + 6 , d_bits + 143, 2);
}
static inline void efr_parity_bits_4(ubit_t *check_bits, const ubit_t *d_bits)
{
memcpy(check_bits + 0 , d_bits + 151, 10);
memcpy(check_bits + 10 , d_bits + 199, 2);
}
static inline void efr_parity_bits_5(ubit_t *check_bits, const ubit_t *d_bits)
{
memcpy(check_bits + 0 , d_bits + 207, 5);
check_bits[5] = d_bits[213];
memcpy(check_bits + 6 , d_bits + 252, 2);
}
//static const uint8_t c_bits_check_fr[] = { 0, 0, 0, 1, 0 };
//static const uint8_t c_bits_check_efr[] = { 1, 1, 0, 1, 0 };
/*! Generate the 33 bytes RTP payload for GSM-FR from a decoded TRAU frame.
* \param[out] out caller-provided output buffer
* \param[in] out_len length of out buffer in bytes
* \param[in] fr input TRAU frame in decoded form
* \returns number of bytes generated in 'out'; negative on error. */
static int trau2rtp_fr(uint8_t *out, size_t out_len, const struct osmo_trau_frame *tf)
{
int i, j, k, l, o;
if (tf->type != OSMO_TRAU16_FT_FR)
return -EINVAL;
/* FR Data Bits according to TS 48.060 Section 5.5.1.1.2 */
if (tf->c_bits[11]) /* BFI */
return 0;
if (out_len < GSM_FR_BYTES)
return -ENOSPC;
out[0] = 0xd << 4;
/* reassemble d-bits */
i = 0; /* counts bits */
j = 4; /* counts output bits */
k = gsm_fr_map[0]-1; /* current number bit in element */
l = 0; /* counts element bits */
o = 0; /* offset input bits */
while (i < 260) {
out[j/8] |= (tf->d_bits[k+o] << (7-(j%8)));
/* to avoid out-of-bounds access in gsm_fr_map[++l] */
if (i == 259)
break;
if (--k < 0) {
o += gsm_fr_map[l];
k = gsm_fr_map[++l]-1;
}
i++;
j++;
}
return GSM_FR_BYTES;
}
/* See Section 5.2 of RFC5993 */
enum rtp_hr_ietf_ft {
FT_GOOD_SPEECH = 0,
FT_GOOD_SID = 2,
FT_NO_DATA = 7,
};
static const uint8_t rtp_hr_sid[14] = { 0x00, 0x00, 0x00, 0x00, 0x3f, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
/*! Generate the 14 bytes ETSI TS 101 318 RTP payload for HR from a decoded 16k TRAU frame.
* Note that thsi differs from the IETF RFC5993 format. However, as OsmoBTS implements
* the TS 101 318 format, we also use the same format here. osmo-mgw can convert them.
* \param[out] out caller-provided output buffer
* \param[in] out_len length of out buffer in bytes
* \param[in] tf input TRAU frame in decoded form
* \returns number of bytes generated in 'out'; negative on error. */
static int trau2rtp_hr16(uint8_t *out, size_t out_len, const struct osmo_trau_frame *tf)
{
unsigned int i;
if (tf->type != OSMO_TRAU16_FT_HR)
return -EINVAL;
/* HR Data Bits according to TS 48.061 Section 5.1.4.1.1 */
if (tf->dir == OSMO_TRAU_DIR_UL && tf->c_bits[11]) /* C12: BFI */
goto bad_frame;
if (out_len < GSM_HR_BYTES)
return -ENOSPC;
/* TS 101 318 Section 5.2: The order of occurrence of the codec parameters in the buffer is
* the same as order of occurrence over the Abis as defined in annex B of ETS 300 969
* [which is 3GPP TS 46.020 */
osmo_ubit2pbit(out, tf->d_bits, 112);
if (tf->c_bits[12] || tf->c_bits[13]) {
/* Generate SID frame as per TS 101 318 Section 5.2.2 */
for (i = 0; i < sizeof(rtp_hr_sid); i++)
out[i] = out[i] | rtp_hr_sid[i];
}
return GSM_HR_BYTES;
bad_frame:
return 0;
}
/*! Generate the 31 bytes RTP payload for GSM-EFR from a decoded TRAU frame.
* \param[out] out caller-provided output buffer
* \param[in] out_len length of out buffer in bytes
* \param[in] fr input TRAU frame in decoded form
* \returns number of bytes generated in 'out'; negative on error. */
static int trau2rtp_efr(uint8_t *out, size_t out_len, const struct osmo_trau_frame *tf)
{
int i, j, rc;
ubit_t check_bits[26];
if (tf->type != OSMO_TRAU16_FT_EFR)
return -EINVAL;
/* FR Data Bits according to TS 48.060 Section 5.5.1.1.2 */
if (tf->c_bits[11]) /* BFI */
return 0;
if (out_len < GSM_EFR_BYTES)
return -ENOSPC;
if (tf->c_bits[11]) /* BFI */
goto bad_frame;
out[0] = 0xc << 4;
/* reassemble d-bits */
for (i = 1, j = 4; i < 39; i++, j++)
out[j/8] |= (tf->d_bits[i] << (7-(j%8)));
efr_parity_bits_1(check_bits, tf->d_bits);
rc = osmo_crc8gen_check_bits(&gsm0860_efr_crc3, check_bits, 26,
tf->d_bits + 39);
if (rc)
goto bad_frame;
for (i = 42, j = 42; i < 95; i++, j++)
out[j/8] |= (tf->d_bits[i] << (7-(j%8)));
efr_parity_bits_2(check_bits, tf->d_bits);
rc = osmo_crc8gen_check_bits(&gsm0860_efr_crc3, check_bits, 12,
tf->d_bits + 95);
if (rc)
goto bad_frame;
for (i = 98, j = 95; i < 148; i++, j++)
out[j/8] |= (tf->d_bits[i] << (7-(j%8)));
efr_parity_bits_3(check_bits, tf->d_bits);
rc = osmo_crc8gen_check_bits(&gsm0860_efr_crc3, check_bits, 8,
tf->d_bits + 148);
if (rc)
goto bad_frame;
for (i = 151, j = 145; i < 204; i++, j++)
out[j/8] |= (tf->d_bits[i] << (7-(j%8)));
efr_parity_bits_4(check_bits, tf->d_bits);
rc = osmo_crc8gen_check_bits(&gsm0860_efr_crc3, check_bits, 12,
tf->d_bits + 204);
if (rc)
goto bad_frame;
for (i = 207, j = 198; i < 257; i++, j++)
out[j/8] |= (tf->d_bits[i] << (7-(j%8)));
efr_parity_bits_5(check_bits, tf->d_bits);
rc = osmo_crc8gen_check_bits(&gsm0860_efr_crc3, check_bits, 8,
tf->d_bits + 257);
if (rc)
goto bad_frame;
return GSM_EFR_BYTES;
bad_frame:
return 0;
}
/* TS 48.060 Section 5.5.1.1.2 */
static int rtp2trau_fr(struct osmo_trau_frame *tf, const uint8_t *data, size_t data_len)
{
int i, j, k, l, o;
/* data_len == 0 for BFI frame */
if (data_len < GSM_FR_BYTES && data_len != 0)
return -EINVAL;
if (data_len && data[0] >> 4 != 0xd)
return -EINVAL;
tf->type = OSMO_TRAU16_FT_FR;
/* FR Data Bits according to TS 48.060 Section 5.5.1.1.2 */
/* FIXME: Generate SID frames? */
/* set c-bits and t-bits */
if (tf->dir == OSMO_TRAU_DIR_UL) {
/* C1 .. C5 */
tf->c_bits[0] = 0;
tf->c_bits[1] = 0;
tf->c_bits[2] = 0;
tf->c_bits[3] = 1;
tf->c_bits[4] = 0;
} else {
/* C1 .. C5 */
tf->c_bits[0] = 1;
tf->c_bits[1] = 1;
tf->c_bits[2] = 1;
tf->c_bits[3] = 0;
tf->c_bits[4] = 0;
}
memset(&tf->c_bits[5], 0, 6); /* C6 .. C11: Time Alignment */
if (tf->dir == OSMO_TRAU_DIR_UL) {
if (data_len == 0)
tf->c_bits[11] = 1; /* C12: BFI */
else
tf->c_bits[11] = 0; /* C12: BFI */
tf->c_bits[12] = 0; /* C13: SID=0 */
tf->c_bits[13] = 0; /* C14: SID=0 */
tf->c_bits[14] = 0; /* C15: TAF (SACCH or not) */
tf->c_bits[15] = 1; /* C16: spare */
tf->c_bits[16] = 0; /* C17: DTXd not applied */
} else {
memset(&tf->c_bits[11], 1, 10); /* C12 .. C15: spare */
tf->c_bits[15] = 1; /* C16: SP=1 */
}
memset(&tf->c_bits[17], 1, 4); /* C18 .. C12: spare */
memset(&tf->t_bits[0], 1, 4);
if (!data_len)
return 0;
/* reassemble d-bits */
i = 0; /* counts bits */
j = 4; /* counts input bits */
k = gsm_fr_map[0]-1; /* current number bit in element */
l = 0; /* counts element bits */
o = 0; /* offset output bits */
while (i < 260) {
tf->d_bits[k+o] = (data[j/8] >> (7-(j%8))) & 1;
/* to avoid out-of-bounds access in gsm_fr_map[++l] */
if (i == 259)
break;
if (--k < 0) {
o += gsm_fr_map[l];
k = gsm_fr_map[++l]-1;
}
i++;
j++;
}
return 0;
}
/* does the RTP HR payload resemble a SID frame or not */
static bool is_rtp_hr_sid(const uint8_t *data, const uint8_t data_len)
{
int i;
if (data_len < GSM_HR_BYTES)
return false;
for (i = 0; i < GSM_HR_BYTES; i++) {
if ((data[i] & rtp_hr_sid[i]) != rtp_hr_sid[i])
return false;
}
return true;
}
static int rtp2trau_hr16(struct osmo_trau_frame *tf, const uint8_t *data, size_t data_len)
{
if (data_len < GSM_HR_BYTES && data_len != 0)
return -EINVAL;
tf->type = OSMO_TRAU16_FT_HR;
if (tf->dir == OSMO_TRAU_DIR_UL) {
/* C1 .. C5 */
tf->c_bits[0] = 0;
tf->c_bits[1] = 0;
tf->c_bits[2] = 0;
tf->c_bits[3] = 1;
tf->c_bits[4] = 1;
} else {
/* C1 .. C5 */
tf->c_bits[0] = 1;
tf->c_bits[1] = 1;
tf->c_bits[2] = 1;
tf->c_bits[3] = 0;
tf->c_bits[4] = 1;
}
/* C6.. C11: Time Alignment */
memset(tf->c_bits + 5, 0, 6);
if (tf->dir == OSMO_TRAU_DIR_UL) {
/* BFI */
if (data_len == 0)
tf->c_bits[11] = 1;
else
tf->c_bits[11] = 0;
if (is_rtp_hr_sid(data, data_len)) {
/* SID=2 is a valid SID frame */
tf->c_bits[12] = 1;
tf->c_bits[13] = 0;
} else {
tf->c_bits[12] = 0;
tf->c_bits[13] = 0;
}
/* FIXME: C15: TAF */
tf->c_bits[15] = 0; /* C16: SP */
tf->c_bits[16] = 0; /* C17: DTXd shall not be applied */
} else {
tf->c_bits[11] = 0; /* C12: UFE */
tf->c_bits[12] = 1; /* C13: spare */
tf->c_bits[13] = 1; /* C14: spare */
tf->c_bits[14] = 1; /* C15: spare */
if (is_rtp_hr_sid(data, data_len))
tf->c_bits[15] = 0; /* C16: SP */
else
tf->c_bits[15] = 1; /* C16: SP */
tf->c_bits[16] = 1; /* C17: spare */
}
memset(tf->c_bits+17, 1, 4); /* C18..C21: spare */
memset(&tf->t_bits[0], 1, 4);
if (tf->dir == OSMO_TRAU_DIR_UL)
tf->ufi = 0;
else
tf->ufi = 1;
/* CRC is computed by TRAU frame encoder */
if (data_len)
memcpy(tf->d_bits, data, GSM_HR_BYTES);
return 0;
}
/* TS 48.060 Section 5.5.1.1.2 */
static int rtp2trau_efr(struct osmo_trau_frame *tf, const uint8_t *data, size_t data_len)
{
int i, j;
ubit_t check_bits[26];
/* data_len == 0 for BFI frame */
if (data_len < GSM_EFR_BYTES && data_len != 0)
return -EINVAL;
if (data_len && data[0] >> 4 != 0xc)
return -EINVAL;
tf->type = OSMO_TRAU16_FT_EFR;
/* FR Data Bits according to TS 48.060 Section 5.5.1.1.2 */
/* set c-bits and t-bits */
tf->c_bits[0] = 1;
tf->c_bits[1] = 1;
tf->c_bits[2] = 0;
tf->c_bits[3] = 1;
tf->c_bits[4] = 0;
memset(&tf->c_bits[5], 0, 6); /* C6 .. C11: Time Alignment */
if (tf->dir == OSMO_TRAU_DIR_UL) {
if (data_len == 0)
tf->c_bits[11] = 1; /* C12: BFI=1 */
else
tf->c_bits[11] = 0; /* C12: BFI=1 */
/* FIXME: Generate SID frames? */
tf->c_bits[12] = 0; /* C13: SID=0 */
tf->c_bits[13] = 0; /* C14: SID=0 */
tf->c_bits[14] = 0; /* C15: TAF (SACCH) */
tf->c_bits[15] = 1; /* C16: spare */
tf->c_bits[16] = 0; /* C17: DTXd applied */
} else {
tf->c_bits[11] = 1; /* C12: UFE (good uplink) */
memset(&tf->c_bits[12], 1, 3); /* C13 .. C15: spare */
tf->c_bits[15] = 1; /* C16: SP=1 */
tf->c_bits[16] = 1; /* C17: spare */
}
memset(&tf->c_bits[17], 1, 4); /* C18 .. C21: spare */
memset(&tf->t_bits[0], 1, 4);
if (data_len == 0)
return 0;
/* reassemble d-bits */
tf->d_bits[0] = 1;
for (i = 1, j = 4; i < 39; i++, j++)
tf->d_bits[i] = (data[j/8] >> (7-(j%8))) & 1;
efr_parity_bits_1(check_bits, tf->d_bits);
osmo_crc8gen_set_bits(&gsm0860_efr_crc3, check_bits, 26,
tf->d_bits + 39);
for (i = 42, j = 42; i < 95; i++, j++)
tf->d_bits[i] = (data[j/8] >> (7-(j%8))) & 1;
efr_parity_bits_2(check_bits, tf->d_bits);
osmo_crc8gen_set_bits(&gsm0860_efr_crc3, check_bits, 12,
tf->d_bits + 95);
for (i = 98, j = 95; i < 148; i++, j++)
tf->d_bits[i] = (data[j/8] >> (7-(j%8))) & 1;
efr_parity_bits_3(check_bits, tf->d_bits);
osmo_crc8gen_set_bits(&gsm0860_efr_crc3, check_bits, 8,
tf->d_bits + 148);
for (i = 151, j = 145; i < 204; i++, j++)
tf->d_bits[i] = (data[j/8] >> (7-(j%8))) & 1;
efr_parity_bits_4(check_bits, tf->d_bits);
osmo_crc8gen_set_bits(&gsm0860_efr_crc3, check_bits, 12,
tf->d_bits + 204);
for (i = 207, j = 198; i < 257; i++, j++)
tf->d_bits[i] = (data[j/8] >> (7-(j%8))) & 1;
efr_parity_bits_5(check_bits, tf->d_bits);
osmo_crc8gen_set_bits(&gsm0860_efr_crc3, check_bits, 8,
tf->d_bits + 257);
return 0;
}
#if 0
static inline memcpy_inc(uint8_t *out, const uint8_t *in, size_t len, unsigned int *idx)
{
memcpy_inc(out, in, len);
*idx += len;
}
static int amr_speech_extract_sbits(ubit_t *s_bits, const struct osmo_trau_frame *tf,
enum osmo_amr_mode mode)
{
unsigned int s_idx = 0;
switch (mode) {
case AMR_4_75:
memcpy_inc(s_bits + s_idx, tf->d_bits + 44, 67 - 44, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 67, 92 - 67, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 108 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 111, 132 - 111, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 135, 148 - 135, &s_idx);
break;
case AMR_5_15:
memcpy_inc(s_bits + s_idx, tf->d_bits + 46, 96 - 46, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 69, 92 - 69, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 114 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 117, 136 - 117, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 139, 158 - 139, &s_idx);
break;
case AMR_5_90:
memcpy_inc(s_bits + s_idx, tf->d_bits + 41, 67 - 41, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 67, 92 - 67, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 116 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 119, 144 - 119, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 147, 168 - 147, &s_idx);
break;
case AMR_6_70:
memcpy_inc(s_bits + s_idx, tf->d_bits + 37, 63 - 37, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 63, 92 - 63, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 120 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 123, 152 - 123, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 155, 180 - 155, &s_idx);
break;
case AMR_7_40:
memcpy_inc(s_bits + s_idx, tf->d_bits + 34, 60 - 34, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 60, 92 - 60, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 124 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 127, 159 - 127, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 162, 191 - 162, &s_idx);
break;
case AMR_7_95:
memcpy_inc(s_bits + s_idx, tf->d_bits + 31, 58 - 31, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 58, 92 - 58, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 127 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 130, 164 - 130, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 167, 199 - 167, &s_idx);
break;
case AMR_10_2:
memcpy_inc(s_bits + s_idx, tf->d_bits + 20, 46 - 20, &s_idx); /* D21..D46 */
memcpy_inc(s_bits + s_idx, tf->d_bits + 46, 92 - 46, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 95, 138 - 95, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 141, 187 - 141, &s_idx);
memcpy_inc(s_bits + s_idx, tf->d_bits + 190, 233 - 190, &s_idx);
break;
case AMR_12_2:
memcpy_inc(s_bits + s_idx, tf->d_bits + 0, 38 - 0, &s_idx); /* D1..D38 */
memcpy_inc(s_bits + s_idx, tf->d_bits + 38, 91 - 38, &s_idx); /* D39..D91 */
memcpy_inc(s_bits + s_idx, tf->d_bits + 94, 144 - 94, &s_idx); /* D95..D144 */
memcpy_inc(s_bits + s_idx, tf->d_bits + 147, 200 - 147, &s_idx);/* D148..D200 */
memcpy_inc(s_bits + s_idx, tf->d_bits + 203, 253 - 203, &s_idx);/* D204..D253 */
break;
}
return s_idx;
}
/* TS 48.060 Section 5.5.1.2.2 */
static int trau2rtp_16(uint8_t *out, const struct osmo_trau_frame *tf, enum osmo_amr_mode last_cmi)
{
enum osmo_amr_mode mode = last_cmi;
uint8_t frame_class = tf->c_bits[21] << 1 | tf->c_bits[20];
uint8_t cmr_cmi = tf->c_bits[23] << 2 | tf->c_bits[24] << 1 | tf->cb_bits[25];
uint8_t no_speech_cls;
uint8_t s_bits[242];
uint8_t d_bits[242];
unsigned int s_idx = 0;
ubit_t rif = FIXME;
if (tf->type != OSMO_TRAU16_FT_AMR)
return -EINVAL;
if (rif == 0)
mode = cmr_cmi;
switch (frame_class) {
case 0: // no speech
no_speech_cls = tf->d_bits[32] << 2 | tf->d_bits[33] << 1 | tf->d_bits[34];
cmi_abs = tf->d_bits[35] << 2 | tf->d_bits[36] < 1 || tf->d_bits[37];
cmr_abs = tf->d_bits[38] << 2 | tf->d_bits[39] < 1 || tf->d_bits[40];
switch (no_speech_cls) {
case 7: // sid first
break;
case 6: // onset
break;
case 5: // sid_update
break;
case 4: // sid_bad
break;
case 0: // no_data
break;
}
break;
case 1: // speech bad
break;
case 2:
case 3:
/* Extract the s-bits from the TRAU frame */
amr_speech_extract_sbits(s_bits, tf, mode);
/* Convert the s-bits to d-bits */
osmo_amr_s_to_d(d_bits, s_bits, mode);
break;
}
}
int trau2rtp_amr(uint8_t *out, const struct osmo_trau_frame *tf, enum osmo_amr_mode last_cmi))
{
switch (tf->type) {
case OSMO_TRAU16_FT_AMR:
return trau2rtp_16(out, tf, last_cmi);
case OSMO_TRAU8_AMR_LOW:
case OSMO_TRAU8_AMR_6k7:
case OSMO_TRAU8_AMR_7k4:
default:
return -EINVAL;
}
}
#endif
int osmo_trau2rtp(uint8_t *out, size_t out_len, const struct osmo_trau_frame *tf,
struct osmo_trau2rtp_state *st)
{
switch (tf->type) {
case OSMO_TRAU16_FT_FR:
return trau2rtp_fr(out, out_len, tf);
case OSMO_TRAU16_FT_EFR:
return trau2rtp_efr(out, out_len, tf);
case OSMO_TRAU16_FT_HR:
return trau2rtp_hr16(out, out_len, tf);
default:
return -EINVAL;
}
}
int osmo_rtp2trau(struct osmo_trau_frame *tf, const uint8_t *rtp, size_t rtp_len,
struct osmo_trau2rtp_state *st)
{
switch (st->type) {
case OSMO_TRAU16_FT_FR:
return rtp2trau_fr(tf, rtp, rtp_len);
case OSMO_TRAU16_FT_EFR:
return rtp2trau_efr(tf, rtp, rtp_len);
case OSMO_TRAU16_FT_HR:
return rtp2trau_hr16(tf, rtp, rtp_len);
default:
return -EINVAL;
}
}