blob: c83441931caf1fcc3a79c0062014833db3d141b5 [file] [log] [blame]
Harald Welte92c45f32010-06-12 18:59:38 +02001/*
2 * Copyright (c) 2005, 2006 Lev Walkin <vlm@lionet.info>. All rights reserved.
3 * Redistribution and modifications are permitted subject to BSD license.
4 */
5#include <asn_system.h>
6#include <asn_internal.h>
7#include <per_support.h>
8
9/*
10 * Extract a small number of bits (<= 31) from the specified PER data pointer.
11 */
12int32_t
13per_get_few_bits(asn_per_data_t *pd, int nbits) {
14 size_t off; /* Next after last bit offset */
15 uint32_t accum;
16 const uint8_t *buf;
17
18 if(nbits < 0 || pd->nboff + nbits > pd->nbits)
19 return -1;
20
21 ASN_DEBUG("[PER get %d bits from %p+%d bits]",
22 nbits, pd->buffer, pd->nboff);
23
24 /*
25 * Normalize position indicator.
26 */
27 if(pd->nboff >= 8) {
28 pd->buffer += (pd->nboff >> 3);
29 pd->nbits -= (pd->nboff & ~0x07);
30 pd->nboff &= 0x07;
31 }
32 off = (pd->nboff += nbits);
33 buf = pd->buffer;
34
35 /*
36 * Extract specified number of bits.
37 */
38 if(off <= 8)
39 accum = nbits ? (buf[0]) >> (8 - off) : 0;
40 else if(off <= 16)
41 accum = ((buf[0] << 8) + buf[1]) >> (16 - off);
42 else if(off <= 24)
43 accum = ((buf[0] << 16) + (buf[1] << 8) + buf[2]) >> (24 - off);
44 else if(off <= 31)
45 accum = ((buf[0] << 24) + (buf[1] << 16)
46 + (buf[2] << 8) + (buf[3])) >> (32 - off);
47 else if(nbits <= 31) {
48 asn_per_data_t tpd = *pd;
49 /* Here are we with our 31-bits limit plus 1..7 bits offset. */
50 tpd.nboff -= nbits;
51 accum = per_get_few_bits(&tpd, nbits - 24) << 24;
52 accum |= per_get_few_bits(&tpd, 24);
53 } else {
54 pd->nboff -= nbits; /* Oops, revert back */
55 return -1;
56 }
57
58 return (accum & (((uint32_t)1 << nbits) - 1));
59}
60
61/*
62 * Extract a large number of bits from the specified PER data pointer.
63 */
64int
65per_get_many_bits(asn_per_data_t *pd, uint8_t *dst, int alright, int nbits) {
66 int32_t value;
67
68 if(alright && (nbits & 7)) {
69 /* Perform right alignment of a first few bits */
70 value = per_get_few_bits(pd, nbits & 0x07);
71 if(value < 0) return -1;
72 *dst++ = value; /* value is already right-aligned */
73 nbits &= ~7;
74 }
75
76 while(nbits) {
77 if(nbits >= 24) {
78 value = per_get_few_bits(pd, 24);
79 if(value < 0) return -1;
80 *(dst++) = value >> 16;
81 *(dst++) = value >> 8;
82 *(dst++) = value;
83 nbits -= 24;
84 } else {
85 value = per_get_few_bits(pd, nbits);
86 if(value < 0) return -1;
87 if(nbits & 7) { /* implies left alignment */
88 value <<= 8 - (nbits & 7),
89 nbits += 8 - (nbits & 7);
90 if(nbits > 24)
91 *dst++ = value >> 24;
92 }
93 if(nbits > 16)
94 *dst++ = value >> 16;
95 if(nbits > 8)
96 *dst++ = value >> 8;
97 *dst++ = value;
98 break;
99 }
100 }
101
102 return 0;
103}
104
105/*
106 * Get the length "n" from the stream.
107 */
108ssize_t
109uper_get_length(asn_per_data_t *pd, int ebits, int *repeat) {
110 ssize_t value;
111
112 *repeat = 0;
113
114 if(ebits >= 0) return per_get_few_bits(pd, ebits);
115
116 value = per_get_few_bits(pd, 8);
117 if(value < 0) return -1;
118 if((value & 128) == 0) /* #10.9.3.6 */
119 return (value & 0x7F);
120 if((value & 64) == 0) { /* #10.9.3.7 */
121 value = ((value & 63) << 8) | per_get_few_bits(pd, 8);
122 if(value < 0) return -1;
123 return value;
124 }
125 value &= 63; /* this is "m" from X.691, #10.9.3.8 */
126 if(value < 1 || value > 4)
127 return -1;
128 *repeat = 1;
129 return (16384 * value);
130}
131
132/*
133 * Get the normally small non-negative whole number.
134 * X.691, #10.6
135 */
136ssize_t
137uper_get_nsnnwn(asn_per_data_t *pd) {
138 ssize_t value;
139
140 value = per_get_few_bits(pd, 7);
141 if(value & 64) { /* implicit (value < 0) */
142 value &= 63;
143 value <<= 2;
144 value |= per_get_few_bits(pd, 2);
145 if(value & 128) /* implicit (value < 0) */
146 return -1;
147 if(value == 0)
148 return 0;
149 if(value >= 3)
150 return -1;
151 value = per_get_few_bits(pd, 8 * value);
152 return value;
153 }
154
155 return value;
156}
157
158/*
159 * Put the normally small non-negative whole number.
160 * X.691, #10.6
161 */
162int
163uper_put_nsnnwn(asn_per_outp_t *po, int n) {
164 int bytes;
165
166 if(n <= 63) {
167 if(n < 0) return -1;
168 return per_put_few_bits(po, n, 7);
169 }
170 if(n < 256)
171 bytes = 1;
172 else if(n < 65536)
173 bytes = 2;
174 else if(n < 256 * 65536)
175 bytes = 3;
176 else
177 return -1; /* This is not a "normally small" value */
178 if(per_put_few_bits(po, bytes, 8))
179 return -1;
180
181 return per_put_few_bits(po, n, 8 * bytes);
182}
183
184
185/*
186 * Put a small number of bits (<= 31).
187 */
188int
189per_put_few_bits(asn_per_outp_t *po, uint32_t bits, int obits) {
190 size_t off; /* Next after last bit offset */
191 size_t omsk; /* Existing last byte meaningful bits mask */
192 uint8_t *buf;
193
194 if(obits <= 0 || obits >= 32) return obits ? -1 : 0;
195
196 ASN_DEBUG("[PER put %d bits to %p+%d bits]",
197 obits, po->buffer, po->nboff);
198
199 /*
200 * Normalize position indicator.
201 */
202 if(po->nboff >= 8) {
203 po->buffer += (po->nboff >> 3);
204 po->nbits -= (po->nboff & ~0x07);
205 po->nboff &= 0x07;
206 }
207
208 /*
209 * Flush whole-bytes output, if necessary.
210 */
211 if(po->nboff + obits > po->nbits) {
212 int complete_bytes = (po->buffer - po->tmpspace);
213 if(po->outper(po->buffer, complete_bytes, po->op_key) < 0)
214 return -1;
215 if(po->nboff)
216 po->tmpspace[0] = po->buffer[0];
217 po->buffer = po->tmpspace;
218 po->nbits = 8 * sizeof(po->tmpspace);
219 po->flushed_bytes += complete_bytes;
220 }
221
222 /*
223 * Now, due to sizeof(tmpspace), we are guaranteed large enough space.
224 */
225 buf = po->buffer;
226 omsk = ~((1 << (8 - po->nboff)) - 1);
227 off = (po->nboff += obits);
228
229 /* Clear data of debris before meaningful bits */
230 bits &= (((uint32_t)1 << obits) - 1);
231
232 ASN_DEBUG("[PER out %d %u/%x (t=%d,o=%d) %x&%x=%x]", obits, bits, bits,
233 po->nboff - obits, off, buf[0], omsk&0xff, buf[0] & omsk);
234
235 if(off <= 8) /* Completely within 1 byte */
236 bits <<= (8 - off),
237 buf[0] = (buf[0] & omsk) | bits;
238 else if(off <= 16)
239 bits <<= (16 - off),
240 buf[0] = (buf[0] & omsk) | (bits >> 8),
241 buf[1] = bits;
242 else if(off <= 24)
243 bits <<= (24 - off),
244 buf[0] = (buf[0] & omsk) | (bits >> 16),
245 buf[1] = bits >> 8,
246 buf[2] = bits;
247 else if(off <= 31)
248 bits <<= (32 - off),
249 buf[0] = (buf[0] & omsk) | (bits >> 24),
250 buf[1] = bits >> 16,
251 buf[2] = bits >> 8,
252 buf[3] = bits;
253 else {
254 ASN_DEBUG("->[PER out split %d]", obits);
255 per_put_few_bits(po, bits >> 8, 24);
256 per_put_few_bits(po, bits, obits - 24);
257 ASN_DEBUG("<-[PER out split %d]", obits);
258 }
259
260 ASN_DEBUG("[PER out %u/%x => %02x buf+%d]",
261 bits, bits, buf[0], po->buffer - po->tmpspace);
262
263 return 0;
264}
265
266
267/*
268 * Output a large number of bits.
269 */
270int
271per_put_many_bits(asn_per_outp_t *po, const uint8_t *src, int nbits) {
272
273 while(nbits) {
274 uint32_t value;
275
276 if(nbits >= 24) {
277 value = (src[0] << 16) | (src[1] << 8) | src[2];
278 src += 3;
279 nbits -= 24;
280 if(per_put_few_bits(po, value, 24))
281 return -1;
282 } else {
283 value = src[0];
284 if(nbits > 8)
285 value = (value << 8) | src[1];
286 if(nbits > 16)
287 value = (value << 8) | src[2];
288 if(nbits & 0x07)
289 value >>= (8 - (nbits & 0x07));
290 if(per_put_few_bits(po, value, nbits))
291 return -1;
292 break;
293 }
294 }
295
296 return 0;
297}
298
299/*
300 * Put the length "n" (or part of it) into the stream.
301 */
302ssize_t
303uper_put_length(asn_per_outp_t *po, size_t length) {
304
305 if(length <= 127) /* #10.9.3.6 */
306 return per_put_few_bits(po, length, 8)
307 ? -1 : (ssize_t)length;
308 else if(length < 16384) /* #10.9.3.7 */
309 return per_put_few_bits(po, length|0x8000, 16)
310 ? -1 : (ssize_t)length;
311
312 length >>= 14;
313 if(length > 4) length = 4;
314
315 return per_put_few_bits(po, 0xC0 | length, 8)
316 ? -1 : (ssize_t)(length << 14);
317}
318